EXCEPTIONAL VALUES OF ENTIRE FUNCTIONS OF FINITE ORDER IN ONE OF THE VARIABLES

ALVARO BUSTINDUY

Abstract

Let $F(z, w)$ be a holomorphic function in $\mathbb{C}^{n} \times \mathbb{C}$ of finite order in w with $n \geq 2$. Let Ω be the set of points $z \in \mathbb{C}^{n}$ where $F(z, w)$ is a non-constant function omitting a value $\pi(z)$. Near a finite accumulation point z_{0} of Ω, we prove in the main result (Theorem 1) that Ω is a local analytic set and $\pi(z)$ is holomorphic, and show the existence of a proper globally analytic set Δ of \mathbb{C}^{n} such that either $\Omega \subset \Delta$ or $\Omega=\mathbb{C}^{n} \backslash \Delta$, being possible in the last case to also determine $F(z, w)$ in terms of $\pi(z)$. We apply this result to several problems. First, we extend a Theorem due to Nishino about exceptional values when near z_{0} dimension of Ω is n and assure the existence of a meromorphic function $\alpha(z)$ in \mathbb{C}^{n} such that $\pi(z)=\alpha(z)$ except at points where $\alpha(z)$ has poles or $F(z, w)$ is constant (also being $F(z, w)$ a polynomial in w if $\alpha(z)$ is $\infty)$. After, we prove that Ω is a local analytic set in \mathbb{C}^{n} and the existence of a proper analytic subset E of \mathbb{C}^{n} such that $\Omega \subset E$ or $\Omega=\mathbb{C}^{n} \backslash E$. Finally, we generalize a Lelong-Gruman Theorem about the set of points z where $\pi(z)=0$.

Contents

1. Introduction1
2. Statement of results 4
3. Proofs 6
References 11

1. Introduction

Consider the product space $\mathbb{C}^{n} \times \mathbb{C}$ of $n+1$ variables z_{1}, \ldots, z_{n}, w, where $z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}$ and $w \in \mathbb{C}$. Let $F(z, w)$ be a holomorphic function in $\mathbb{C}^{n} \times \mathbb{C}$. Given $z \in \mathbb{C}^{n}, F(z, w)$ is a holomorphic function in \mathbb{C}. If $F(z, w)$ is not constant, according to Picard Theorem, $F(z, w)$ takes all the values of \mathbb{C} minus at most one point $\pi(z)$. The point $\pi(z)$ is called the exceptional value of $F(z, w)$ in z.

[^0]In the present work we study $\pi(z)$ and

$$
\Omega=\left\{z \in \mathbb{C}^{n} \mid \pi(z) \text { exists }\right\}
$$

when $F(z, w)$ is a holomorphic function in $\mathbb{C}^{n} \times \mathbb{C}$ of finite order in w.
1.1. Given $F(z, w)$ and $r_{j} \in \mathbb{R}^{+}(j=1, \ldots, i-1)$, if

$$
M_{F}\left(r_{1}, \ldots, r_{i-1}, z_{i}, \ldots, z_{n}, t\right)=\max _{|w|=t,\left|z_{j}\right|=r_{j}}|F(z, w)|
$$

we associate:

- The order of $F(z, w)$ in z :

$$
\rho(z)=\limsup _{t \rightarrow \infty} \frac{\log \log ^{+} M_{F}\left(z_{1}, \ldots, z_{n}, t\right)}{\log t}
$$

It is defined as the order of $w \mapsto F(z, w)$. We say that $F(z, w)$ is of finite order in w if $\rho(z)$ is finite for any z in \mathbb{C}^{n}. According to [4, Theorem 1.41] (see also [4, p.26]), $F(z, w)$ is of finite order in w if and only if $\rho(z)$ is finite in a non-pluripolar set of \mathbb{C}^{n}.

- The upper order of $F(z, w)$ in the variable w :

$$
\rho\left(r_{1}, \ldots, r_{n}\right)=\limsup _{t \rightarrow \infty} \frac{\log \log ^{+} M_{F}\left(r_{1}, \ldots, r_{n}, t\right)}{\log t}
$$

It does not depend on $r_{j}(j=1, \ldots, n)$, and then is a constant, denoted by $\bar{\rho}_{w}\left[7\right.$, p. 110]. Moreover, $\rho(z) \leq \bar{\rho}_{w}[7$, p. 120] .
According to a theorem due to Ronkin [7, Theorem 3.2.1] (proved by Lelong in case $n=1$), if $F(z, w)$ is of finite order in $w, \bar{\rho}_{w}$ is finite. In fact, $\rho(z)<\bar{\rho}_{w}$ in a set of class F_{σ}.

We will refer through this work to X as an analytic subset of a domain D in \mathbb{C}^{n} when, for each point p of D, there are an open neighbourhood U of p in D and a finite family of holomorphic functions on U such that $X \cap U$ is the set of its common zeros. On the other hand, we will say that X is a local analytic set in D if the previous U and finite family of holomorphic functions exist for each point p of X (but not necessarily for $p \in D \backslash X$). Clearly, X is an analytic subset of D if and only if, X is a local analytic set and is closed in D. Finally, the sets in \mathbb{C}^{n} defined by the common zeros of a finite family of holomorphic functions on \mathbb{C}^{n} are called globally analytic sets of \mathbb{C}^{n}.
1.2. In 1963, Nishino [5] studied $\pi(z)$ for a holomorphic $F(z, w)$ in $\mathbb{C} \times \mathbb{C}$ of finite order in w. He showed the following theorem in [5, p. 371]:
Theorem. (Nishino) Let $F(z, w)$ be a holomorphic function in $\mathbb{C} \times \mathbb{C}$ of finite order in w. If there is a finite accumulation point z_{0} of Ω, then there exists a meromorphic function $\alpha(z)$ in \mathbb{C} such that $\pi(z)=\alpha(z)$ except at points z in \mathbb{C} where $\alpha(z)$ has poles or $F(z, w)$ is constant. Moreover, $F(z, w)$ is a polynomial in w when $\alpha(z)$ is ∞.

Nishino's Theorem implies that

1) The set Ω is a local analytic set in \mathbb{C}. Let

$$
A=\{z \in \mathbb{C} \mid F(z, w) \text { is constant }\}
$$

and consider the Hartogs series expansion of $F(z, w)$ centered at $w=0$:

$$
F(z, w)=\sum_{k=0}^{\infty} F_{k}(z) w^{k},
$$

with $F_{k}(z)(k=0,1, \ldots)$ holomorphic in \mathbb{C}. Since any point z in A holds $\left\{F_{k}(z)=0\right\}(k=1,2 \ldots), A$ has no finite accumulation points, and then it is proper analytic subset of \mathbb{C}. Then, there is a proper analytic subset E of \mathbb{C} such that either $\Omega \subset E$ (all the points of Ω are isolated) or $\Omega=\mathbb{C} \backslash E$, where E is given by the union of the set of poles of $\alpha(z)$ and A. In both cases, Ω is a local analytic set of \mathbb{C}.
2) The graph G_{π} of $\pi: \Omega \rightarrow \mathbb{C}$ is a subset of the graph of a meromorphic function $\alpha(z)$ in \mathbb{C}^{2} in presence of a finite accumulation point z_{0} of Ω. This does not necessarily occur if $F(z, w)$ is not of finite order in w. Let us consider the holomorphic function, [5, p. 367]:

$$
F(z, w)=\left\{\begin{array}{cc}
\frac{e^{z e^{w}}-1}{z} & \text { if } z \neq 0 \\
e^{w} & \text { if } z=0
\end{array}\right.
$$

In this case, if $\alpha(z)=-1 / z, \pi(z)=\alpha(z)$ when $z \neq 0$. However, $\pi(0)=0$, and $(0,0)$ is in G_{π} but not in the graph of $\alpha(z)$ in \mathbb{C}^{2}. Moreover, note that in this example $\alpha(0)=\infty$ but $F(0, w)$ is not a polynomial.
In this work we are interested in studying the generalization of Nishino's Theorem to any number of variables:

Problem 1. Consider $n \geq 2$ and a finite accumulation point z_{0} of Ω. We want to analyze if there is a neighborhood U of z_{0} in \mathbb{C}^{n} such that $\Omega \cap U$ is a local analytic set in U, and extend Nishino's Theorem when $\Omega \cap U$ is a local analytic set of dimension n, by explicitly determining $F(z, w)$ for it.

We also want to apply the solution of Problem 1 in order to obtain a similar description of Ω as in case $n=1$:

Problem 2. We want to study if Ω is a local analytic set in \mathbb{C}^{n}, and if there exists a proper analytic subset E of \mathbb{C} such that either $\Omega \subset E$ or $\Omega=\mathbb{C} \backslash E$ when $n \geq 2$.
1.3. Let $F(z, w)$ be a holomorphic function in $\mathbb{C}^{n} \times \mathbb{C}$ of finite order in w. Lelong and Gruman studied the set

$$
Z^{0}=\left\{z \in \mathbb{C}^{n} \mid(\text { for all } w) F(z, w) \neq 0\right\}
$$

Lelong proved in [3] when $n=1$ (see also [2, Corollary, p. 688]) that Z^{0} or $\mathbb{C} \backslash Z^{0}$ is discrete. Later, Lelong and Gruman studied the case $n \geq 2$, and proved in [4, Theorem 3.44] the following theorem:

Theorem. (Lelong-Gruman) Let $F(z, w)$ be a holomorphic function in $\mathbb{C}^{n} \times \mathbb{C}$ of finite order in w, with $n \geq 2$. Consider $A^{0}=\left\{z \in \mathbb{C}^{n} \mid F(z, w) \equiv 0\right\}$. Then $Z^{0} \cup A^{0}$ is contained in a proper analytic subset of \mathbb{C}^{n} unless $Z^{0} \cup A^{0}=\mathbb{C}^{n}$.

Problem 3. We want to study whether Lelong-Gruman Theorem follows from the answer to Problem 2, and thus obtain a generalization of it.

Acknowledgement. I wish to thank the referee, for a careful reading and suggestions that have contributed to improve the presentation of the paper.

2. Statement of results

2.1. Main result.

Theorem 1. Let $F(z, w)$ be a holomorphic function in $\mathbb{C}^{n} \times \mathbb{C}$ of finite order in w, with $n \geq 2$. Consider a finite accumulation point z_{0} of Ω. Then there exists a neighborhood U of z_{0} in \mathbb{C}^{n} such that $\Omega \cap U$ is a local analytic set in U and $\pi(z)$ is holomorphic over $\Omega \cap U$. Moreover, there is a proper globally analytic set Δ of \mathbb{C}^{n} such that either $\Omega \cap U \subset \Delta \cap U$ or $\Omega \cap U=\left(\mathbb{C}^{n} \backslash \Delta\right) \cap U$. In the latter case, when dimension of $\Omega \cap U$ is $n, F(z, w)$ can be explicitly determined: there are holomorphic functions $\xi_{i}(z)(i=1,2), v_{k}(z)\left(k=1, \ldots, d \in \mathbb{N}^{+}\right)$and $\eta(z)$ in \mathbb{C}^{n} such that

$$
F(z, w)= \begin{cases}\frac{\xi_{2}(z)\left(e^{\xi_{1}(z)\left[v_{1}(z) w+\cdots+v_{d}(z) w^{d}\right]}-1\right)}{\xi_{1}(z)}+\eta(z) & \text { if } \xi_{1}(z) \neq 0 \\ \xi_{2}(z)\left[v_{1}(z) w+\cdots+v_{d}(z) w^{d}\right]+\eta(z) & \text { if } \xi_{1}(z)=0\end{cases}
$$

Remark 1. We determined $F(z, w)$ in [1] under more restrictive conditions. Concretely, if there is a neighborhood U of z_{0} in \mathbb{C}^{n} contained in Ω and $F(z, w)$ is not constant for any z in \mathbb{C}^{n}.
2.2. Extension of Nishino's Theorem. Theorem 1 solves Problem 1, since it implies that $\Omega \cap U$ is a local analytic set, for a neighborhood U of z_{0} in \mathbb{C}^{n}, and allows to obtain explicitly $F(z, w)$ (on \mathbb{C}^{n}) when $\Omega \cap U$ is of dimension n, deducing from it Nishino's Theorem.

Corollary 1. Let $F(z, w)$ be a holomorphic function in $\mathbb{C}^{n} \times \mathbb{C}$ of finite order in w, with $n \geq 2$. If there exists a neighborhood U of z_{0} such that $\Omega \cap U$ is a local analytic set of dimension n then:
a) There is a meromorphic function $\alpha(z)$ in \mathbb{C}^{n} such that $\pi(z)=\alpha(z)$ on Ω, where $\Omega=\mathbb{C}^{n} \backslash E$ and E is a proper globally analytic set of \mathbb{C}^{n}. Moreover, $E=A \cup E^{\prime}$, where A is the set of points z in \mathbb{C}^{n} such that $F(z, w)$ is constant and E^{\prime} is the set of poles of $\alpha(z)$.
b) It holds $F(z, w)$ is a polynomial in w if and only if $z \in E$.
c) The order $\rho(z)$ of $F(z, w)$ in w is $d \in \mathbb{N}^{+}$, except on a globally analytic set of \mathbb{C}^{n} where $\rho(z)<d$.

Note that a) in Corollary 1 is a generalization for $n \geq 2$ of 1) and 2) of 1.2. In particular, we obtain Nishino's Theorem (see 1.2) for $n \geq 2$:

Corollary 2. Let $F(z, w)$ be a holomorphic function in $\mathbb{C}^{n} \times \mathbb{C}$ of finite order in w, with $n \geq 2$. Consider a finite accumulation point z_{0} of Ω. If there exists a neighborhood U of z_{0} such that $\Omega \cap U$ is a local analytic set of dimension n, then there exists a meromorphic function $\alpha(z)$ in \mathbb{C}^{n} such that $\pi(z)=\alpha(z)$ except at points z in \mathbb{C}^{n} where $\alpha(z)$ has poles or $F(z, w)$ is constant. Moreover, $F(z, w)$ is a polynomial in w if $\alpha(z)$ is ∞.
2.3. Description of Ω. Theorem 1 and Theorem of Ronkin [7, Theorem 3.2.1] (see 1.1) allow to describe Ω as in case $n=1$ (see 1.2):

Theorem 2. Let $F(z, w)$ be a holomorphic function in $\mathbb{C}^{n} \times \mathbb{C}$ of finite order in w, with $n \geq 2$. Then Ω is a local analytic set in \mathbb{C}^{n} and there exists a proper analytic subset E of \mathbb{C}^{n} such that $\Omega \subset E$ or $\Omega=\mathbb{C}^{n} \backslash E$.
Example. Denote $x=\left(z_{1}, \ldots, z_{n-1}\right)$ in \mathbb{C}^{n-1} and $z=\left(x, z_{n}\right)$ in \mathbb{C}^{n}. Let $f(x)$ and $g(z)$ be holomorphic functions in \mathbb{C}^{n-1} and \mathbb{C}^{n}, respectively, and define

$$
F(z, w)=\left\{\begin{array}{cc}
\frac{e^{g(z) w}}{g(z)}-\frac{1}{g(z)}+w\left[z_{n}-f(x)\right] e^{g(z) w} & \text { if } g(z) \neq 0 \\
w\left[1+z_{n}-f(x)\right] & \text { if } g(z)=0
\end{array}\right.
$$

It holds that $\Omega=G_{f} \cap\{g(z) \neq 0\}$, where G_{f} is the graph of $f(x)$ in \mathbb{C}^{n}. For each finite accumulation point of Ω there is a neighbourhood U of it such that $\Omega \cap U$ is contained in an analytic set of dimension $n-1$. In this case $\Omega \subset G_{f}$ is a local analytic set in \mathbb{C}^{n} of dimension $n-1$.
2.4. Lelong-Gruman Theorem. Consider $n \geq 2$ and define

$$
\Omega^{0}=\left\{z \in \mathbb{C}^{n} \mid \pi(z)=0\right\} \subset \Omega
$$

and $A=\left\{z \in \mathbb{C}^{n} \mid F(z, w)\right.$ is constant $\}$. Note that A is a proper analytic subset of \mathbb{C}^{n} : as in case $n=1$ (1.2), we can expand $F(z, w)$ as Hartogs series centered at $w=0$,

$$
F(z, w)=\sum_{k=0}^{\infty} F_{k}(z) w^{k}
$$

with $F_{k}(z)(k=0,1 \ldots)$ holomorphic in \mathbb{C}^{n}. Since A is the intersection of the family $\left\{F_{k}(z)=0\right\}(k=1,2 \ldots)$, we know $[6$, Corollary 2.1] that A is a proper analytic subset of \mathbb{C}^{n}. Take Z^{0} and A^{0} defined in 1.3 . These sets are related by the following equality

$$
Z^{0} \cup A^{0}=\Omega^{0} \cup A .
$$

Theorem 2 implies:
Corollary 3. Let $F(z, w)$ be a holomorphic function in $\mathbb{C}^{n} \times \mathbb{C}$ of finite order in w, with $n \geq 2$. There exists a proper analytic subset E_{0} of \mathbb{C}^{n} such that $\Omega^{0} \subset E_{0}$ or $\Omega^{0}=\mathbb{C}^{n}$.

Corollary 3 solves Problem 2 since $Z^{0} \cup A^{0}$ is contained in $E_{0} \cup A$ unless $Z^{0} \cup A^{0}=\mathbb{C}^{n}$ and Lelong-Gruman Theorem follows from Theorem 2.

3. Proofs

Proof of Theorem 1.

3.1. Consider a finite accumulation point z_{0} of Ω. Let $\mathbf{B}\left(z_{0}\right)$ be a ball centered at z_{0} of radius $r_{0}>0$. Since $\rho(z)$ is finite for any $z \in \mathbb{C}^{n}$ (see 1.1), we can assume that $\rho(z)$ on $\mathbf{B}\left(z_{0}\right)$ is bounded by a finite constant ρ_{0}. Define $\Omega\left(z_{0}\right)=\Omega \cap \mathbf{B}\left(z_{0}\right)$. Note that z_{0} can not be in $\Omega\left(z_{0}\right)$ if $z_{0} \in \partial \Omega\left(z_{0}\right)$.

Take z in $\Omega\left(z_{0}\right)$. It follows by Hadamard's Theorem that

$$
F(z, w)-\pi(z)=e^{g(z, w)}
$$

with $g(z, w)$ a polynomial in w of degree $\rho(z)$. Therefore $\rho(z) \in \mathbb{N}^{+}$on $\Omega\left(z_{0}\right)$ and $\rho_{0}>0$ (see, $[8,8.24$ and 8.26]).

Consider $\eta(z)=F(z, 0)$ and define

$$
\tilde{F}(z, w)=F(z, w)-\eta(z)
$$

If z in $\Omega\left(z_{0}\right)$, then $\pi(z)-\eta(z)$ is an exceptional value of $\tilde{F}(z, w)$. Note that $\pi(z)-\eta(z)$ is not zero since $\tilde{F}(z, 0)$ is identically zero. Define $C_{0}(z)$ such that

$$
-1 / C_{0}(z)=\pi(z)-\eta(z)
$$

We can write

$$
\tilde{F}(z, w)=\frac{e^{g(z, w)}}{C_{0}(z)}-\frac{1}{C_{0}(z)}
$$

with $g(z, w)=C_{1}(z) w+C_{2}(z) w^{2}+\ldots$ and $C_{k}(z)$ complex numbers for $k \geq 1$. Note that $C_{k}(z)=0$ if k is an integer $>\rho(z)$.
3.2. Given z in $\Omega\left(z_{0}\right)$, take successive partial derivatives with respect to w of $\tilde{F}(z, w)$ at $w=0$. Because $\tilde{F}(z, 0)$ is equal to zero, we obtain [5]:

1) $C_{1}(z)=C_{0}(z) f_{1}(z)$, with $f_{1}(z)=\frac{\partial \tilde{F}}{\partial w}(z, 0)$,
2) $C_{2}(z)=C_{0}(z) f_{2}(z)-\frac{1}{2}\left[C_{1}(z)\right]^{2}$, with $f_{2}(z)=\frac{1}{2!} \frac{\partial^{2} \tilde{F}}{\partial w^{2}}(z, 0)$,
and thus the general case:
k) $C_{k}(z)=C_{0}(z) f_{k}(z)-Q_{k}\left[C_{1}(z), \ldots, C_{k-1}(z)\right](k=2,3, \ldots)$ where Q_{k} is a polynomial of $k-1$ variables with coefficients in \mathbb{Q}, and

$$
f_{k}(z)=\frac{1}{k!} \frac{\partial^{k} \tilde{F}}{\partial w^{k}}(z, 0)
$$

Then, if z is in $\Omega\left(z_{0}\right)$ we conclude [5, p. 370]:
(i) $C_{k}(z)$ is expressed as a polynomial in the variable $C_{0}(z)$ with coefficients given by holomorphic functions $f_{k}(z)(k=1,2, \ldots)$ in \mathbb{C}^{n} evaluated in z, for each positive integer k. Then, there exist polynomials $R_{k}(z, w)$ $(k=1,2, \ldots)$ in w whose coefficients are holomorphic functions in \mathbb{C}^{n} such that

$$
C_{k}(z)=R_{k}\left(z, C_{0}(z)\right) .
$$

(ii) Since $\rho(z) \leq \rho_{0}$, if $d=\left[\rho_{0}\right]$, it holds $C_{k}(z)=0$ for each integer $k \geq d+1$.

The most important consequence of the above points is the following lemma:
Lemma 1. Fixed a point $\left(z^{\prime}, w_{1}\right)$ in $\mathbf{B}\left(z_{0}\right) \times \mathbb{C}$, with $w_{1} \neq 0$, then $R_{k}\left(z^{\prime}, w_{1}\right)=0$ for $k \geq d+1$ and infinitely many $f_{k}\left(z^{\prime}\right)(k=1,2 \ldots)$ are different from zero if and only if $\tilde{F}\left(z^{\prime}, w\right)$ has an exceptional value $-1 / w_{1}$.

Proof. If $R_{k}\left(z^{\prime}, w_{1}\right)=0$ for $k \geq d+1$, by definition of $R_{k}(z, w)(k=1,2 \ldots)$ given in (i), and 1), 2) and k) in 3.2, one can obtain $f_{k}\left(z^{\prime}\right)$ recursively in terms of $R_{k}\left(z^{\prime}, w_{1}\right)(k=1,2 \ldots)$. If infinitely many $f_{k}\left(z^{\prime}\right)(k=1,2 \ldots)$ are $\neq 0$, they determine

$$
\tilde{F}\left(z^{\prime}, w\right)=\frac{e^{g\left(z^{\prime}, w\right)}}{w_{1}}-\frac{1}{w_{1}},
$$

with $g\left(z^{\prime}, w\right)=R_{1}\left(z^{\prime}, w_{1}\right) w+R_{2}\left(z^{\prime}, w_{1}\right) w^{2}+\cdots+R_{d}\left(z^{\prime}, w_{1}\right) w^{d}$. Therefore $\tilde{F}\left(z^{\prime}, w\right)$ has an exceptional value $-1 / w_{1}$. The other implication is clear from 3.1, 3.2.

Remark 2. After Lemma $1, z$ is in $\Omega\left(z_{0}\right)$ if and only if there exists $w \neq 0$ such that $R_{k}(z, w)=0$ for $k \geq d+1$ and infinitely many $f_{k}(z)$ are not zero. In this case, $\pi(z)=\eta(z)-1 / w$.

Lemma 2. If A^{p} is the set of points z in \mathbb{C}^{n} such that $F(z, w)$ is a polynomial in w, then $A^{p} \cap \mathbf{B}\left(z_{0}\right)$ is an analytic subset of $\mathbf{B}\left(z_{0}\right)$.
Proof. Consider the expansion of $F(z, w)$ as Hartogs series centered at $w=0$ (see 2.4). Define the family of subsets $U_{k} \subset A^{p}(k=0,1, \ldots)$ of points z in $\mathbf{B}\left(z_{0}\right)$ such that $F(z, w)$ is a polynomial of degree at most k. It holds that U_{k} is the intersection of the family of analytic subsets of $\mathbf{B}\left(z_{0}\right):\left\{F_{j}(z)=0\right\} \cap \mathbf{B}\left(z_{0}\right)$ $(j=k+1, \ldots)$, and then an analytic subset of $\mathbf{B}\left(z_{0}\right)$ [6, Corollary 2.1]. It is clear that $A^{p}=\cup_{k=0}^{\infty} U_{k}$ and that $U_{k} \subset U_{k+1}(k=0,1, \ldots)$. Since the dimension of U_{k} is $0<d_{k} \leq n-1$ and $d_{k} \leq d_{k+1}(k=0,1, \ldots)$, there is $k_{0} \in \mathbb{N}$ such that $U_{k}=U_{k_{0}}\left(k=k_{0}+1, \ldots\right)$ and $A^{p}=U_{k_{0}}$ [6, Remark 2.10].

3.3.

Proposition 1. Let $F(z, w)$ be a holomorphic function in $\mathbb{C}^{n} \times \mathbb{C}$ of finite order in w, with $n \geq 2$. Consider a finite accumulation point z_{0} of Ω. Then there exists a neighborhood U of z_{0} in \mathbb{C}^{n} such that $\Omega \cap U$ is a local analytic set in U and $\pi(z)$ is holomorphic over $\Omega \cap U$. Moreover, there is a proper globally analytic set Δ of \mathbb{C}^{n} such that either $\Omega \cap U \subset \Delta \cap U$ or $\Omega \cap U=\left(\mathbb{C}^{n} \backslash \Delta\right) \cap U$.

Proof. Take $U=\mathbf{B}\left(z_{0}\right)$. Consider the family $\left\{S_{j}\right\}(j=1,2 \ldots)$ of globally analytic sets of \mathbb{C}^{n+1} defined by $\left\{R_{d+j}(z, w)=0\right\}$ where $R_{d+j}(z, w)$ are as in 3.2. The points (z, w) in \mathbb{C}^{n+1} such that z in $\Omega\left(z_{0}\right)$ and $w=C_{0}(z)$ define a subset $L \subset S_{j}(j=1,2 \ldots)$. Then the intersection of $\left\{S_{j}\right\}$ defines a globally analytic set S of \mathbb{C}^{n+1} containing L [6, Corollary 2.1].

Let $\tilde{z} \in \Omega\left(z_{0}\right)$. By Lemma 2, there is a ball $\mathbf{B}(\tilde{z}) \subset \mathbb{C}^{n}$ of center \tilde{z} contained in $\mathbf{B}\left(z_{0}\right)$ such that $\mathbf{B}(\tilde{z}) \cap A^{p}$ is empty. Then, for any $z \in \mathbf{B}(\tilde{z})$, infinitely many $f_{k}(z)(k=1,2 \ldots)$ are $\neq 0$. Consider $S^{*}=S \backslash\{w=0\}, \tilde{L}=L \cap(\mathbf{B}(\tilde{z}) \times \mathbb{C})$, and the projection $\Pi_{1}: \mathbb{C}^{n+1} \rightarrow \mathbb{C}^{n}, \Pi_{1}(z, w)=z$. After Lemma 1 and Remark 2, it follows that

$$
\tilde{L}=S^{*} \cap(\mathbf{B}(\tilde{z}) \times \mathbb{C})
$$

and $\Pi_{1}(\tilde{L})=\Omega\left(z_{0}\right) \cap \mathbf{B}(\tilde{z})$. Since $\Pi_{1 \mid S}: S \rightarrow \Pi_{1}(S)$ is a proper map, then $\Omega\left(z_{0}\right) \cap \mathbf{B}(\tilde{z})$ is a local analytic set. It proves that $\Omega \cap U$ is a local analytic set in U. It follows by [6, Remark 2.8] that $C_{0}(z)$ and $\pi(z)=-1 / C_{0}(z)$ are holomorphic on $\Omega\left(z_{0}\right) \cap \mathbf{B}(\tilde{z})$, and $\pi(z)$ is holomorphic on $\Omega \cap U$.

Note that the above analysis implies that

$$
L=S^{*} \cap\left(\left(\mathbf{B}\left(z_{0}\right) \backslash A^{p}\right) \times \mathbb{C}\right)
$$

is the graph of holomorphic function $C_{0}(z)$ on $\Omega\left(z_{0}\right)$.
Due to [6, Remark 2.10], S must be the intersection of a finite family $\left\{S_{r_{j}}\right\}$ $(j=1, \ldots, q)$ where $r_{j}(j=1, \ldots, q)$ are different integers in \mathbb{N}^{+}. Explicitly, according to 3.2 , each $S_{r_{j}}(j=1, \ldots, q)$ is defined by the zeros of a polynomial in w with holomorphic coefficients:

$$
R_{d+r_{j}}(z, w)=A_{0}^{j}(z)+A_{1}^{j}(z) w+\cdots+A_{l_{j}}^{j}(z) w^{l_{j}}
$$

with $A_{h}^{j}(z)\left(h=0, \ldots, l_{j} \in \mathbb{N}\right)$ holomorphic in \mathbb{C}^{n}, where $A_{0}^{j}(z)$ is assumed to be not identically zero since L does not intersect $\{w=0\}$.

There are two possibilities:

1) There exists $j_{0} \in\{1, \ldots, q\}$ with $l_{j_{0}}>1$. Consider the discriminant $d_{j_{0}}(z)$ of $R_{d+r_{j}}(z, w)$ with respect to w. In this case, for $z \in \Omega\left(z_{0}\right)$, it holds

$$
A_{l_{j_{0}}}^{j_{0}}(z) \cdot d_{j_{0}}(z)=0,
$$

since $A_{l_{j_{0}}}^{j_{0}}(z) \neq 0$ implies $d_{j_{0}}(z)=0$. Otherwise the $l_{j_{0}}$ points: $\left(z, w_{i}\right)$ $\left(i=1, \ldots, l_{j_{0}}\right)$ are in L, which is not possible because L is the graph of a holomorphic function. Since $\Omega\left(z_{0}\right) \subset \mathcal{E}_{j_{0}} \cap U$, with

$$
\mathcal{E}_{j_{0}}=\left\{A_{l_{j_{0}}}^{j_{0}}(z)=0\right\} \cup\left\{d_{j_{0}}(z)=0\right\},
$$

then $\Omega\left(z_{0}\right) \subset \Delta \cap U$, where Δ is the intersection of the family of sets $\left\{\mathcal{E}_{j_{0}}\right\}$, with $j_{0} \in\{1, \ldots, q\}$ and $l_{j_{0}}>1$.
2) For all $j \in\{1, \ldots, q\}, l_{j}=1$. In this case S is the intersection of

$$
S_{j}=\left\{A_{0}^{j}(z)+A_{1}^{j}(z) w=0\right\}(j=1, \ldots, q) .
$$

Take $\xi_{1 j}(z), \xi_{2 j}(z)(j=1, \ldots, q)$ holomorphic functions in \mathbb{C}^{n} relatively prime at any z such that $A_{0}^{j}(z)+A_{1}^{j}(z) w=p^{j}(z)\left[\xi_{1 j}(z)(z)-\xi_{2 j}(z) w\right]$, with $p^{j}(z)$ holomorphic in \mathbb{C}^{n}. Consider

$$
\Gamma_{j}(z)=\left|\begin{array}{ll}
A_{0}^{1}(z) & A_{0}^{j}(z) \\
A_{1}^{1}(z) & A_{1}^{j}(z)
\end{array}\right|(j=1, \ldots, q) .
$$

2a) (All S_{j} are dependent) If $q=1$, or $q>1$ and $\Gamma_{j}(z) \equiv 0(j=2, \ldots, q)$: $\Omega\left(z_{0}\right)=\left(\mathbb{C}^{n} \backslash \Delta\right) \cap U$, with $\Delta=\Delta_{1} \cup \Delta_{2}$, where

$$
\Delta_{1}=\left\{\xi_{11}(z)=0\right\} \cup\left\{\xi_{21}(z)=0\right\}
$$

and Δ_{2} is given by the intersection of $\left\{p^{j}(z)=0\right\}(j=1, \ldots, q)$.
2b) If $q>1$ and there is $j_{0} \in\{2, \ldots, q\}$ such that $\Gamma_{j_{0}}(z)$ is not identically zero, $\Delta_{j_{0}}=\left\{\Gamma_{j_{0}}(z)=0\right\}$ defines a proper globally analytic of \mathbb{C}^{n} such that $\Omega\left(z_{0}\right) \subset \Delta_{j_{0}} \cap U$. Then $\Omega\left(z_{0}\right) \subset \Delta \cap U$, where Δ is the intersection of sets $\Delta_{j_{0}}$, with $j_{0} \in\{2, \ldots, q\}$ such that $\Gamma_{j_{0}}(z) \not \equiv 0$.

It finishes the proof of Proposition 1.
3.4. Let us suppose that dimension of $\Omega\left(z_{0}\right)$ is n. It is clear that 2 a) of 3.3 holds and $\Omega\left(z_{0}\right)=\left(\mathbb{C}^{n} \backslash \Delta\right) \cap U=\mathbf{B}\left(z_{0}\right) \backslash \Delta$. Denote $\xi_{11}(z)$ and $\xi_{21}(z)$, respectively, by $\xi_{1}(z)$ and $\xi_{2}(z)$. Consider

$$
\xi(z)=\frac{\xi_{1}(z)}{\xi_{2}(z)}=-\frac{A_{0}^{1}(z)}{A_{1}^{1}(z)} .
$$

The meromorphic function $-1 / \xi(z)$ restricted to $\mathbf{B}\left(z_{0}\right) \backslash \Delta$ is equal to $-1 / C_{0}(z)$. If we substitute $C_{0}(z)$ by $\xi(z)$ (meromorphic function in \mathbb{C}^{n} !) in the definitions of $C_{k}(z)$ of 3.2 , taking $C_{k}(z)=R_{k}(z, \xi(z))(k=1,2, \ldots)$ we obtain a function

$$
G(z, w)=\frac{e^{C_{1}(z) w+\cdots+C_{d}(z) w^{d}}}{\xi(z)}-\frac{1}{\xi(z)} .
$$

Note that $G(z, w)$ is holomorphic in $\left(\mathbb{C}^{n} \backslash \Delta\right) \times \mathbb{C}$ and coincides with $\tilde{F}(z, w)$ in $\left(\mathbf{B}\left(z_{0}\right) \backslash \Delta\right) \times \mathbb{C}$ (see 3.2). Then, $G(z, w)$ is holomorphic in \mathbb{C}^{n+1} and equals to $\tilde{F}(z, w)$. Therefore, if $g(z, w)=C_{1}(z) w+\cdots+C_{d}(z) w^{d}, g(z, w) / \xi(z)$ is holomorphic in \mathbb{C}^{n+1} and $g(z, w)=\xi(z)\left[u_{1}(z) w+\cdots+u_{d}(z) w^{d}\right]$ with $u_{k}(z)$ holomorphic in $\mathbb{C}^{n}(k=1,2, \ldots, d)$.

Explicitly,

$$
\begin{aligned}
\tilde{F}(z, w)=\frac{1}{1!}\left[u_{1}(z) w\right. & \left.+\cdots+u_{d}(z) w^{d}\right] \\
+\frac{\xi(z)}{2!}\left[u_{1}(z) w\right. & \left.+\cdots+u_{d}(z) w^{d}\right]^{2}+ \\
& +\frac{\xi(z)^{2}}{3!}\left[u_{1}(z) w+\cdots+u_{d}(z) w^{d}\right]^{3}+\cdots
\end{aligned}
$$

3.5. It holds that

$$
\left\{z \in \mathbb{C}^{n} \mid \tilde{F}(z, w) \text { is constant }\right\}=\left\{z \in \mathbb{C}^{n} \mid u_{1}(z)=\cdots=u_{d}(z)=0\right\}
$$

First we treat the case where $\xi(z)$ is holomorphic.
Consider z^{\prime} in \mathbb{C}^{n} such that $\tilde{F}\left(z^{\prime}, w\right)$ is constant. If $\xi\left(z^{\prime}\right)=0$, according to the expansion of $\tilde{F}(z, w)$ in 3.4 , it holds if and only if $u_{1}\left(z^{\prime}\right) w+\cdots+u_{d}\left(z^{\prime}\right) w^{d}=0$ for any $w \in \mathbb{C}$, or equivalently if $u_{k}\left(z^{\prime}\right)=0(k=1, \ldots, d)$. If $\xi\left(z^{\prime}\right) \neq 0$, as

$$
\xi(z) \tilde{F}(z, w)+1=e^{\xi(z) \cdot\left[u_{1}(z) w+\cdots+u_{d}(z) w^{d}\right]}
$$

in the same way it is equivalent to $u_{k}\left(z^{\prime}\right)=0(k=1, \ldots, d)$.
Now, we treat the case where $\xi(z)$ is not holomorphic.
Consider a point z^{\prime} in \mathbb{C}^{n} such that $\xi_{1}\left(z^{\prime}\right) \neq 0$ and $\xi_{2}\left(z^{\prime}\right)=0$. Assume that there is w_{1} such that $\left[u_{1}\left(z^{\prime}\right) w_{1}+\cdots+u_{d}\left(z^{\prime}\right) w_{1}^{d}\right] \neq 0$ and take a ball $\mathbf{B}\left(z^{\prime}, w_{1}\right)$ in \mathbb{C}^{n+1} centered at $\left(z^{\prime}, w_{1}\right)$ of radius $r_{1}>0$ such that $\overline{\mathbf{B}}\left(z^{\prime}, w_{1}\right) \cap\left\{(z, w) \mid \xi_{1}(z)=0\right\}$ is empty. Take a line ℓ in \mathbb{C}^{n+1} passing through $\left(z^{\prime}, w_{1}\right)$ and consider $\ell_{0}=$ $\ell \cap \overline{\mathbf{B}}\left(z^{\prime}, w_{1}\right)$. We can assume by [6, Lemma 2.8] that

$$
\ell_{0} \cap\left\{(z, w) \mid \xi_{2}(z)=0\right\}=\left\{\left(z^{\prime}, w_{1}\right)\right\} .
$$

Suppose that ℓ_{0} is defined by $\left\{(z, w)=\lambda_{0} t+\left(z^{\prime}, w_{1}\right)\right\}$, for a fixed $\lambda_{0} \in \mathbb{C}^{n+1}$ and t in a disk \mathbb{D}_{ϵ} in \mathbb{C} of center $t=0$ and radius sufficiently small $\epsilon>0$. It follows by the above expansion of $\tilde{F}(z, w)$ in 3.4 that $\tilde{F}(z, w)$ over L_{0} is of the form $\left(e^{g(t)}-1\right) / g(t)$, where $g(t)$ is holomorphic on $\mathbb{D}_{\epsilon} \backslash\{0\}$, and with a pole of positive order at $t=0$. It implies the existence of an essential singularity of $\tilde{F}(z, w)$ over ℓ_{0} at $\left(z^{\prime}, w_{1}\right)$ and contradicts that $\tilde{F}(z, w)$ is holomorphic. Then, if $\xi_{1}\left(z^{\prime}\right) \neq 0$ and $\xi_{2}\left(z^{\prime}\right)=0$ necessarily $\left[u_{1}\left(z^{\prime}\right) w+\cdots+u_{d}\left(z^{\prime}\right) w^{d}\right]=0$, for any w in \mathbb{C}, and $u_{k}\left(z^{\prime}\right)=0(k=1, \ldots, d)$. It follows that

$$
\left\{\xi_{2}(z)=0\right\} \subset\left\{u_{1}(z)=\cdots=u_{d}(z)=0\right\} .
$$

Then $u_{k}(z)=v_{k}(z) \xi_{2}(z)(k=1, \ldots, d)$, with $v_{k}(z)$ holomorphic in \mathbb{C}^{n}, and

$$
\begin{aligned}
\tilde{F}(z, w)=\frac{1}{1!} \xi_{2}(z)\left[v_{1}(z) w+\cdots\right. & \left.+v_{d}(z) w^{d}\right]+ \\
+\frac{\xi_{1}(z) \xi_{2}(z)}{2!} & {\left[v_{1}(z) w+\cdots+v_{d}(z) w^{d}\right]^{2}+} \\
& +\frac{\xi_{1}(z)^{2} \xi_{2}(z)}{3!}\left[v_{1}(z) w+\cdots+v_{d}(z) w^{d}\right]^{3}+\cdots
\end{aligned}
$$

From this expression, it is clear that a point z in \mathbb{C}^{n} verifies $\tilde{F}(z, w)$ is constant if and only if $u_{k}(z)=0(k=1, \ldots, d)$, and $F(z, w)=\tilde{F}(z, w)+\eta(z)$ is as in the statement of Theorem.

Proof of Corollary 1. It is enough to analyze the explicit expression of $F(z, w)$ obtained in the statement of Theorem 1. For $a)$, we take

$$
\alpha(z)=-\frac{\xi_{2}(z)}{\xi_{1}(z)}+\eta(z),
$$

$A=\left\{\xi_{2}(z)=0\right\} \cup\left\{v_{1}(z)=\cdots=v_{d}(z)=0\right\}$, and $E^{\prime}=\left\{\xi_{1}(z)=0\right\}$. The point b) is clear. For c), we see $\rho(z)$ is d, except on $E \cup\left\{v_{d}(z)=0\right\}$ where is $<d$.
Proof of Corollary 2. It follows directly from a), b) of Corollary 1.
Proof of Theorem 2. Consider Ω_{1} and Ω_{2}, respectively, the set of finite accumulation points of Ω and the set of isolated points of Ω. If Ω_{1} is empty, $\Omega=\Omega_{2}$ is closed and discrete in \mathbb{C}^{n}, and then it defines a proper analytic subset E of \mathbb{C}^{n}. Suppose $z_{0} \in \Omega_{1}$. If there exists a neighborhood U of z_{0} such that $\Omega \cap U$ is a local analytic set of dimension n, according to a) of Corollary 1 , there exists a proper analytic subset E of \mathbb{C}^{n} such that $\Omega=\mathbb{C}^{n} \backslash E$ (note that in this case, Ω_{2} is empty). If there exists a neighborhood U of z_{0} such that $\Omega \cap U$ is a local analytic set of dimension $<n$, according to the proof of Theorem 1, concretely, Proposition 1, there exist a neighborhood U of z_{0} in \mathbb{C}^{n} and a proper globally analytic set Δ of \mathbb{C}^{n} such that $\Omega \cap U \subset \Delta \cap U$. Theorem of Ronkin (see 1.1) allows to take $\rho_{0}=\bar{\rho}_{w}$ independently of the point z_{0}, and then conclude that Δ is the same set for all the finite accumulation points of Ω. Then, it is enough to define the proper analytic subset $E=\Delta \cup \Omega_{2}$ of \mathbb{C}^{n} to obtain $\Omega \subset E$.

Proof of Corollary 3. Since $\Omega^{0} \subset \Omega$, if dimension of Ω is $<n$, the proof follows from Theorem 2 taking $E_{0}=E$. If dimension of Ω is n, according to a) of Corollary $1, \Omega^{0}$ is defined by the analytic subset E_{0} of \mathbb{C}^{n} given by the zeros of $\alpha(z)$. Then E_{0} is proper if $\alpha(z)$ is not identically zero or \mathbb{C}^{n} otherwise.

References

[1] A. Bustinduy. Exceptional values of holomorphic functions. Remarks on a Nishino's Theorem. J. Math. Anal. Appl. 457 (2018), 1007-1014.
[2] A. Eremenko. Exceptional values in holomorphic families of entire functions. Mich. Math. J., 54 (2006), 687-696.
[3] P. Lelong. Sur les valeurs lacunaires d'une relation à deux variables I, II. Bull. Sci. math. (2), 66 (1942), 103-108; 66 (1942), 112-125
[4] P. Lelong and L. Gruman. Entire functions of several complex variables. Grundlehren der Mathematischen Wissenschaften, 282. Springer-Verlag, 1986.
[5] T. Nishino. Sur les valeurs exceptionnelles au sens de Picard d'une function entière de deux variables. J. Math. Kyoto Univ., 2 (1963), 365-372.
[6] T. Nishino. Function theory in several complex variables. Translations of Mathematical Monographs 193. American Mathematical Society, 2001.
[7] L. I. Ronkin. Introduction to the theory of entire functions of several variables. Translations of Mathematical Monographs 44. American Mathematical Society, 1974.
[8] E. C. Titchmarsh. The theory of functions. 2. ed. Oxford, University Press 1939.
Departamento de Ingeniería Industrial
Escuela Politécnica Superior
Universidad Antonio de Nebrija
C/Sta. Cruz de Marcenado, 27, 28015 Madrid. Spain
Email address: abustind@nebrija.es

[^0]: 2010 Mathematics Subject Classification. Primary 32A10; 32A15.
 Key words and phrases. Exceptional values; Entire function in several variables.
 Supported by Spanish MICINN project PID2021-126124NB-I00.

