EXCEPTIONAL VALUES OF ENTIRE FUNCTIONS OF FINITE ORDER IN ONE OF THE VARIABLES

ALVARO BUSTINDUY

ABSTRACT. Let F(z, w) be a holomorphic function in $\mathbb{C}^n \times \mathbb{C}$ of finite order in w with $n \geq 2$. Let Ω be the set of points $z \in \mathbb{C}^n$ where F(z, w) is a non-constant function omitting a value $\pi(z)$. Near a finite accumulation point z_0 of Ω , we prove in the main result (Theorem 1) that Ω is a local analytic set and $\pi(z)$ is holomorphic, and show the existence of a proper globally analytic set Δ of \mathbb{C}^n such that either $\Omega \subset \Delta$ or $\Omega = \mathbb{C}^n \setminus \Delta$, being possible in the last case to also determine F(z, w) in terms of $\pi(z)$. We apply this result to several problems. First, we extend a Theorem due to Nishino about exceptional values when near z_0 dimension of Ω is n and assure the existence of a meromorphic function $\alpha(z)$ in \mathbb{C}^n such that $\pi(z) = \alpha(z)$ except at points where $\alpha(z)$ has poles or F(z, w) is constant (also being F(z, w) a polynomial in w if $\alpha(z)$ is ∞). After, we prove that Ω is a local analytic set in \mathbb{C}^n and the existence of a proper analytic subset E of \mathbb{C}^n such that $\Omega \subset E$ or $\Omega = \mathbb{C}^n \setminus E$. Finally, we generalize a Lelong-Gruman Theorem about the set of points z where $\pi(z) = 0$.

Contents

1.	Introduction	1
2.	Statement of results	4
3.	Proofs	6
References		11

1. INTRODUCTION

Consider the product space $\mathbb{C}^n \times \mathbb{C}$ of n + 1 variables z_1, \ldots, z_n, w , where $z = (z_1, \ldots, z_n) \in \mathbb{C}^n$ and $w \in \mathbb{C}$. Let F(z, w) be a holomorphic function in $\mathbb{C}^n \times \mathbb{C}$. Given $z \in \mathbb{C}^n$, F(z, w) is a holomorphic function in \mathbb{C} . If F(z, w) is not constant, according to Picard Theorem, F(z, w) takes all the values of \mathbb{C} minus at most one point $\pi(z)$. The point $\pi(z)$ is called the exceptional value of F(z, w) in z.

²⁰¹⁰ Mathematics Subject Classification. Primary 32A10; 32A15.

Key words and phrases. Exceptional values; Entire function in several variables. Supported by Spanish MICINN project PID2021-126124NB-I00.

In the present work we study $\pi(z)$ and

$$\Omega = \{ z \in \mathbb{C}^n \, | \, \pi(z) \text{ exists} \}$$

when F(z, w) is a holomorphic function in $\mathbb{C}^n \times \mathbb{C}$ of finite order in w.

1.1. Given F(z, w) and $r_j \in \mathbb{R}^+$ (j = 1, ..., i - 1), if

$$M_F(r_1, \dots, r_{i-1}, z_i, \dots, z_n, t) = \max_{|w|=t, |z_j|=r_j} |F(z, w)|$$

we associate:

- The order of F(z, w) in z:

$$\rho(z) = \limsup_{t \to \infty} \frac{\log \log^+ M_F(z_1, \dots, z_n, t)}{\log t}.$$

It is defined as the order of $w \mapsto F(z, w)$. We say that F(z, w) is of finite order in w if $\rho(z)$ is finite for any z in \mathbb{C}^n . According to [4, Theorem 1.41] (see also [4, p. 26]), F(z, w) is of finite order in w if and only if $\rho(z)$ is finite in a non-pluripolar set of \mathbb{C}^n .

- The upper order of F(z, w) in the variable w:

$$\rho(r_1, \dots, r_n) = \limsup_{t \to \infty} \frac{\log \log^+ M_F(r_1, \dots, r_n, t)}{\log t}$$

It does not depend on r_j (j = 1, ..., n), and then is a constant, denoted by $\overline{\rho}_w$ [7, p. 110]. Moreover, $\rho(z) \leq \overline{\rho}_w$ [7, p. 120].

According to a theorem due to Ronkin [7, Theorem 3.2.1] (proved by Lelong in case n = 1), if F(z, w) is of finite order in w, $\overline{\rho}_w$ is finite. In fact, $\rho(z) < \overline{\rho}_w$ in a set of class F_{σ} .

We will refer through this work to X as an analytic subset of a domain D in \mathbb{C}^n when, for each point p of D, there are an open neighbourhood U of p in D and a finite family of holomorphic functions on U such that $X \cap U$ is the set of its common zeros. On the other hand, we will say that X is a local analytic set in D if the previous U and finite family of holomorphic functions exist for each point p of X (but not necessarily for $p \in D \setminus X$). Clearly, X is an analytic subset of D if and only if, X is a local analytic set and is closed in D. Finally, the sets in \mathbb{C}^n defined by the common zeros of a finite family of holomorphic functions on \mathbb{C}^n are called globally analytic sets of \mathbb{C}^n .

1.2. In 1963, Nishino [5] studied $\pi(z)$ for a holomorphic F(z, w) in $\mathbb{C} \times \mathbb{C}$ of finite order in w. He showed the following theorem in [5, p. 371]:

Theorem. (Nishino) Let F(z, w) be a holomorphic function in $\mathbb{C} \times \mathbb{C}$ of finite order in w. If there is a finite accumulation point z_0 of Ω , then there exists a meromorphic function $\alpha(z)$ in \mathbb{C} such that $\pi(z) = \alpha(z)$ except at points z in \mathbb{C} where $\alpha(z)$ has poles or F(z, w) is constant. Moreover, F(z, w) is a polynomial in w when $\alpha(z)$ is ∞ .

Nishino's Theorem implies that

1) The set Ω is a local analytic set in \mathbb{C} . Let

$$A = \{ z \in \mathbb{C} \mid F(z, w) \text{ is constant} \}$$

and consider the Hartogs series expansion of F(z, w) centered at w = 0:

$$F(z,w) = \sum_{k=0}^{\infty} F_k(z)w^k,$$

with $F_k(z)$ (k = 0, 1, ...) holomorphic in \mathbb{C} . Since any point z in A holds $\{F_k(z) = 0\}$ (k = 1, 2...), A has no finite accumulation points, and then it is proper analytic subset of \mathbb{C} . Then, there is a proper analytic subset E of \mathbb{C} such that either $\Omega \subset E$ (all the points of Ω are isolated) or $\Omega = \mathbb{C} \setminus E$, where E is given by the union of the set of poles of $\alpha(z)$ and A. In both cases, Ω is a local analytic set of \mathbb{C} .

2) The graph G_{π} of $\pi : \Omega \to \mathbb{C}$ is a subset of the graph of a meromorphic function $\alpha(z)$ in \mathbb{C}^2 in presence of a finite accumulation point z_0 of Ω . This does not necessarily occur if F(z, w) is not of finite order in w. Let us consider the holomorphic function, [5, p. 367]:

$$F(z,w) = \begin{cases} \frac{e^{ze^w} - 1}{z} & \text{if } z \neq 0\\ e^w & \text{if } z = 0 \end{cases}$$

In this case, if $\alpha(z) = -1/z$, $\pi(z) = \alpha(z)$ when $z \neq 0$. However, $\pi(0) = 0$, and (0,0) is in G_{π} but not in the graph of $\alpha(z)$ in \mathbb{C}^2 . Moreover, note that in this example $\alpha(0) = \infty$ but F(0, w) is not a polynomial.

In this work we are interested in studying the generalization of Nishino's Theorem to any number of variables:

Problem 1. Consider $n \ge 2$ and a finite accumulation point z_0 of Ω . We want to analyze if there is a neighborhood U of z_0 in \mathbb{C}^n such that $\Omega \cap U$ is a local analytic set in U, and extend Nishino's Theorem when $\Omega \cap U$ is a local analytic set of dimension n, by explicitly determining F(z, w) for it.

We also want to apply the solution of Problem 1 in order to obtain a similar description of Ω as in case n = 1:

Problem 2. We want to study if Ω is a local analytic set in \mathbb{C}^n , and if there exists a proper analytic subset E of \mathbb{C} such that either $\Omega \subset E$ or $\Omega = \mathbb{C} \setminus E$ when $n \geq 2$.

1.3. Let F(z, w) be a holomorphic function in $\mathbb{C}^n \times \mathbb{C}$ of finite order in w. Lelong and Gruman studied the set

$$Z^{0} = \{ z \in \mathbb{C}^{n} \mid (\text{for all } w) F(z, w) \neq 0 \}.$$

Lelong proved in [3] when n = 1 (see also [2, Corollary, p. 688]) that Z^0 or $\mathbb{C} \setminus Z^0$ is discrete. Later, Lelong and Gruman studied the case $n \ge 2$, and proved in [4, Theorem 3.44] the following theorem:

Theorem. (Lelong-Gruman) Let F(z, w) be a holomorphic function in $\mathbb{C}^n \times \mathbb{C}$ of finite order in w, with $n \geq 2$. Consider $A^0 = \{z \in \mathbb{C}^n | F(z, w) \equiv 0\}$. Then $Z^0 \cup A^0$ is contained in a proper analytic subset of \mathbb{C}^n unless $Z^0 \cup A^0 = \mathbb{C}^n$.

Problem 3. We want to study whether Lelong-Gruman Theorem follows from the answer to Problem 2, and thus obtain a generalization of it.

Acknowledgement. I wish to thank the referee, for a careful reading and suggestions that have contributed to improve the presentation of the paper.

2. Statement of results

2.1. Main result.

Theorem 1. Let F(z, w) be a holomorphic function in $\mathbb{C}^n \times \mathbb{C}$ of finite order in w, with $n \geq 2$. Consider a finite accumulation point z_0 of Ω . Then there exists a neighborhood U of z_0 in \mathbb{C}^n such that $\Omega \cap U$ is a local analytic set in U and $\pi(z)$ is holomorphic over $\Omega \cap U$. Moreover, there is a proper globally analytic set Δ of \mathbb{C}^n such that either $\Omega \cap U \subset \Delta \cap U$ or $\Omega \cap U = (\mathbb{C}^n \setminus \Delta) \cap U$. In the latter case, when dimension of $\Omega \cap U$ is n, F(z, w) can be explicitly determined: there are holomorphic functions $\xi_i(z)$ (i = 1, 2), $v_k(z)$ $(k = 1, \ldots, d \in \mathbb{N}^+)$ and $\eta(z)$ in \mathbb{C}^n such that

$$F(z,w) = \begin{cases} \frac{\xi_2(z)(e^{\xi_1(z)[v_1(z)w+\dots+v_d(z)w^d]}-1)}{\xi_1(z)} + \eta(z) & \text{if } \xi_1(z) \neq 0\\\\ \xi_2(z)[v_1(z)w+\dots+v_d(z)w^d] + \eta(z) & \text{if } \xi_1(z) = 0 \end{cases}$$

Remark 1. We determined F(z, w) in [1] under more restrictive conditions. Concretely, if there is a neighborhood U of z_0 in \mathbb{C}^n contained in Ω and F(z, w) is not constant for any z in \mathbb{C}^n .

2.2. Extension of Nishino's Theorem. Theorem 1 solves Problem 1, since it implies that $\Omega \cap U$ is a local analytic set, for a neighborhood U of z_0 in \mathbb{C}^n , and allows to obtain explicitly F(z, w) (on \mathbb{C}^n) when $\Omega \cap U$ is of dimension n, deducing from it Nishino's Theorem.

Corollary 1. Let F(z, w) be a holomorphic function in $\mathbb{C}^n \times \mathbb{C}$ of finite order in w, with $n \geq 2$. If there exists a neighborhood U of z_0 such that $\Omega \cap U$ is a local analytic set of dimension n then:

- a) There is a meromorphic function $\alpha(z)$ in \mathbb{C}^n such that $\pi(z) = \alpha(z)$ on Ω , where $\Omega = \mathbb{C}^n \setminus E$ and E is a proper globally analytic set of \mathbb{C}^n . Moreover, $E = A \cup E'$, where A is the set of points z in \mathbb{C}^n such that F(z, w) is constant and E' is the set of poles of $\alpha(z)$.
- b) It holds F(z, w) is a polynomial in w if and only if $z \in E$.
- c) The order $\rho(z)$ of F(z, w) in w is $d \in \mathbb{N}^+$, except on a globally analytic set of \mathbb{C}^n where $\rho(z) < d$.

4

Note that a) in Corollary 1 is a generalization for $n \ge 2$ of 1) and 2) of 1.2. In particular, we obtain Nishino's Theorem (see 1.2) for $n \ge 2$:

Corollary 2. Let F(z, w) be a holomorphic function in $\mathbb{C}^n \times \mathbb{C}$ of finite order in w, with $n \geq 2$. Consider a finite accumulation point z_0 of Ω . If there exists a neighborhood U of z_0 such that $\Omega \cap U$ is a local analytic set of dimension n, then there exists a meromorphic function $\alpha(z)$ in \mathbb{C}^n such that $\pi(z) = \alpha(z)$ except at points z in \mathbb{C}^n where $\alpha(z)$ has poles or F(z, w) is constant. Moreover, F(z, w) is a polynomial in w if $\alpha(z)$ is ∞ .

2.3. Description of Ω . Theorem 1 and Theorem of Ronkin [7, Theorem 3.2.1] (see 1.1) allow to describe Ω as in case n = 1 (see 1.2):

Theorem 2. Let F(z, w) be a holomorphic function in $\mathbb{C}^n \times \mathbb{C}$ of finite order in w, with $n \geq 2$. Then Ω is a local analytic set in \mathbb{C}^n and there exists a proper analytic subset E of \mathbb{C}^n such that $\Omega \subset E$ or $\Omega = \mathbb{C}^n \setminus E$.

Example. Denote $x = (z_1, \ldots, z_{n-1})$ in \mathbb{C}^{n-1} and $z = (x, z_n)$ in \mathbb{C}^n . Let f(x) and g(z) be holomorphic functions in \mathbb{C}^{n-1} and \mathbb{C}^n , respectively, and define

$$F(z,w) = \begin{cases} \frac{e^{g(z)w}}{g(z)} - \frac{1}{g(z)} + w [z_n - f(x)] e^{g(z)w} & \text{if } g(z) \neq 0 \\ \\ w [1 + z_n - f(x)] & \text{if } g(z) = 0 \end{cases}$$

It holds that $\Omega = G_f \cap \{g(z) \neq 0\}$, where G_f is the graph of f(x) in \mathbb{C}^n . For each finite accumulation point of Ω there is a neighbourhood U of it such that $\Omega \cap U$ is contained in an analytic set of dimension n-1. In this case $\Omega \subset G_f$ is a local analytic set in \mathbb{C}^n of dimension n-1.

2.4. Lelong-Gruman Theorem. Consider $n \ge 2$ and define

$$\Omega^0 = \{ z \in \mathbb{C}^n \, | \, \pi(z) = 0 \} \subset \Omega$$

and $A = \{z \in \mathbb{C}^n | F(z, w) \text{ is constant} \}$. Note that A is a proper analytic subset of \mathbb{C}^n : as in case n = 1 (1.2), we can expand F(z, w) as Hartogs series centered at w = 0,

$$F(z,w) = \sum_{k=0}^{\infty} F_k(z)w^k,$$

with $F_k(z)$ (k = 0, 1...) holomorphic in \mathbb{C}^n . Since A is the intersection of the family $\{F_k(z) = 0\}$ (k = 1, 2...), we know [6, Corollary 2.1] that A is a proper analytic subset of \mathbb{C}^n . Take Z^0 and A^0 defined in 1.3. These sets are related by the following equality

$$Z^0 \cup A^0 = \Omega^0 \cup A.$$

Theorem 2 implies:

Corollary 3. Let F(z, w) be a holomorphic function in $\mathbb{C}^n \times \mathbb{C}$ of finite order in w, with $n \geq 2$. There exists a proper analytic subset E_0 of \mathbb{C}^n such that $\Omega^0 \subset E_0$ or $\Omega^0 = \mathbb{C}^n$.

Corollary 3 solves Problem 2 since $Z^0 \cup A^0$ is contained in $E_0 \cup A$ unless $Z^0 \cup A^0 = \mathbb{C}^n$ and Lelong-Gruman Theorem follows from Theorem 2.

3. Proofs

Proof of Theorem 1.

3.1. Consider a finite accumulation point z_0 of Ω . Let $\mathbf{B}(z_0)$ be a ball centered at z_0 of radius $r_0 > 0$. Since $\rho(z)$ is finite for any $z \in \mathbb{C}^n$ (see 1.1), we can assume that $\rho(z)$ on $\mathbf{B}(z_0)$ is bounded by a finite constant ρ_0 . Define $\Omega(z_0) = \Omega \cap \mathbf{B}(z_0)$. Note that z_0 can not be in $\Omega(z_0)$ if $z_0 \in \partial \Omega(z_0)$.

Take z in $\Omega(z_0)$. It follows by Hadamard's Theorem that

$$F(z,w) - \pi(z) = e^{g(z,w)}$$

with g(z, w) a polynomial in w of degree $\rho(z)$. Therefore $\rho(z) \in \mathbb{N}^+$ on $\Omega(z_0)$ and $\rho_0 > 0$ (see, [8, 8.24 and 8.26]).

Consider $\eta(z) = F(z, 0)$ and define

$$F(z,w) = F(z,w) - \eta(z).$$

If z in $\Omega(z_0)$, then $\pi(z) - \eta(z)$ is an exceptional value of $\tilde{F}(z, w)$. Note that $\pi(z) - \eta(z)$ is not zero since $\tilde{F}(z, 0)$ is identically zero. Define $C_0(z)$ such that

$$-1/C_0(z) = \pi(z) - \eta(z)$$

We can write

$$\tilde{F}(z,w) = \frac{e^{g(z,w)}}{C_0(z)} - \frac{1}{C_0(z)},$$

with $g(z,w) = C_1(z)w + C_2(z)w^2 + \dots$ and $C_k(z)$ complex numbers for $k \ge 1$. Note that $C_k(z) = 0$ if k is an integer $> \rho(z)$.

3.2. Given z in $\Omega(z_0)$, take successive partial derivatives with respect to w of $\tilde{F}(z, w)$ at w = 0. Because $\tilde{F}(z, 0)$ is equal to zero, we obtain [5]:

- 1) $C_1(z) = C_0(z)f_1(z)$, with $f_1(z) = \frac{\partial \tilde{F}}{\partial w}(z, 0)$,
- 2) $C_2(z) = C_0(z)f_2(z) \frac{1}{2}[C_1(z)]^2$, with $f_2(z) = \frac{1}{2!}\frac{\partial^2 \tilde{F}}{\partial w^2}(z,0)$, and thus the general case:
- k) $C_k(z) = C_0(z)f_k(z) Q_k[C_1(z), \dots, C_{k-1}(z)]$ $(k = 2, 3, \dots)$ where Q_k is a polynomial of k-1 variables with coefficients in \mathbb{Q} , and

$$f_k(z) = \frac{1}{k!} \frac{\partial^k F}{\partial w^k}(z, 0).$$

Then, if z is in $\Omega(z_0)$ we conclude [5, p. 370]:

EXCEPTIONAL VALUES

(i) $C_k(z)$ is expressed as a polynomial in the variable $C_0(z)$ with coefficients given by holomorphic functions $f_k(z)$ (k = 1, 2, ...) in \mathbb{C}^n evaluated in z, for each positive integer k. Then, there exist polynomials $R_k(z, w)$ (k = 1, 2, ...) in w whose coefficients are holomorphic functions in \mathbb{C}^n such that

$$C_k(z) = R_k(z, C_0(z)).$$

(*ii*) Since $\rho(z) \leq \rho_0$, if $d = [\rho_0]$, it holds $C_k(z) = 0$ for each integer $k \geq d+1$.

The most important consequence of the above points is the following lemma:

Lemma 1. Fixed a point (z', w_1) in $\mathbf{B}(z_0) \times \mathbb{C}$, with $w_1 \neq 0$, then $R_k(z', w_1) = 0$ for $k \geq d+1$ and infinitely many $f_k(z')$ (k = 1, 2...) are different from zero if and only if $\tilde{F}(z', w)$ has an exceptional value $-1/w_1$.

Proof. If $R_k(z', w_1) = 0$ for $k \ge d+1$, by definition of $R_k(z, w)$ (k = 1, 2...) given in (i), and 1, 2) and k) in 3.2, one can obtain $f_k(z')$ recursively in terms of $R_k(z', w_1)$ (k = 1, 2...). If infinitely many $f_k(z')$ (k = 1, 2...) are $\ne 0$, they determine

$$\tilde{F}(z',w) = \frac{e^{g(z',w)}}{w_1} - \frac{1}{w_1}$$

with $g(z', w) = R_1(z', w_1)w + R_2(z', w_1)w^2 + \cdots + R_d(z', w_1)w^d$. Therefore $\tilde{F}(z', w)$ has an exceptional value $-1/w_1$. The other implication is clear from 3.1, 3.2.

Remark 2. After Lemma 1, z is in $\Omega(z_0)$ if and only if there exists $w \neq 0$ such that $R_k(z, w) = 0$ for $k \geq d+1$ and infinitely many $f_k(z)$ are not zero. In this case, $\pi(z) = \eta(z) - 1/w$.

Lemma 2. If A^p is the set of points z in \mathbb{C}^n such that F(z, w) is a polynomial in w, then $A^p \cap \mathbf{B}(z_0)$ is an analytic subset of $\mathbf{B}(z_0)$.

Proof. Consider the expansion of F(z, w) as Hartogs series centered at w = 0(see 2.4). Define the family of subsets $U_k \subset A^p$ (k = 0, 1, ...) of points z in $\mathbf{B}(z_0)$ such that F(z, w) is a polynomial of degree at most k. It holds that U_k is the intersection of the family of analytic subsets of $\mathbf{B}(z_0)$: $\{F_j(z) = 0\} \cap \mathbf{B}(z_0)$ (j = k + 1, ...), and then an analytic subset of $\mathbf{B}(z_0)$ [6, Corollary 2.1]. It is clear that $A^p = \bigcup_{k=0}^{\infty} U_k$ and that $U_k \subset U_{k+1}$ (k = 0, 1, ...). Since the dimension of U_k is $0 < d_k \le n - 1$ and $d_k \le d_{k+1}$ (k = 0, 1, ...), there is $k_0 \in \mathbb{N}$ such that $U_k = U_{k_0}$ $(k = k_0 + 1, ...)$ and $A^p = U_{k_0}$ [6, Remark 2.10].

3.3.

Proposition 1. Let F(z, w) be a holomorphic function in $\mathbb{C}^n \times \mathbb{C}$ of finite order in w, with $n \geq 2$. Consider a finite accumulation point z_0 of Ω . Then there exists a neighborhood U of z_0 in \mathbb{C}^n such that $\Omega \cap U$ is a local analytic set in U and $\pi(z)$ is holomorphic over $\Omega \cap U$. Moreover, there is a proper globally analytic set Δ of \mathbb{C}^n such that either $\Omega \cap U \subset \Delta \cap U$ or $\Omega \cap U = (\mathbb{C}^n \setminus \Delta) \cap U$.

Proof. Take $U = \mathbf{B}(z_0)$. Consider the family $\{S_j\}$ (j = 1, 2...) of globally analytic sets of \mathbb{C}^{n+1} defined by $\{R_{d+j}(z, w) = 0\}$ where $R_{d+j}(z, w)$ are as in 3.2. The points (z, w) in \mathbb{C}^{n+1} such that z in $\Omega(z_0)$ and $w = C_0(z)$ define a subset $L \subset S_j$ (j = 1, 2...). Then the intersection of $\{S_j\}$ defines a globally analytic set S of \mathbb{C}^{n+1} containing L [6, Corollary 2.1].

Let $\tilde{z} \in \Omega(z_0)$. By Lemma 2, there is a ball $\mathbf{B}(\tilde{z}) \subset \mathbb{C}^n$ of center \tilde{z} contained in $\mathbf{B}(z_0)$ such that $\mathbf{B}(\tilde{z}) \cap A^p$ is empty. Then, for any $z \in \mathbf{B}(\tilde{z})$, infinitely many $f_k(z)$ (k = 1, 2...) are $\neq 0$. Consider $S^* = S \setminus \{w = 0\}, \tilde{L} = L \cap (\mathbf{B}(\tilde{z}) \times \mathbb{C})$, and the projection $\Pi_1 : \mathbb{C}^{n+1} \to \mathbb{C}^n, \Pi_1(z, w) = z$. After Lemma 1 and Remark 2, it follows that

$$\tilde{L} = S^* \cap (\mathbf{B}(\tilde{z}) \times \mathbb{C})$$

and $\Pi_1(\tilde{L}) = \Omega(z_0) \cap \mathbf{B}(\tilde{z})$. Since $\Pi_{1|S} : S \to \Pi_1(S)$ is a proper map, then $\Omega(z_0) \cap \mathbf{B}(\tilde{z})$ is a local analytic set. It proves that $\Omega \cap U$ is a local analytic set in U. It follows by [6, Remark 2.8] that $C_0(z)$ and $\pi(z) = -1/C_0(z)$ are holomorphic on $\Omega(z_0) \cap \mathbf{B}(\tilde{z})$, and $\pi(z)$ is holomorphic on $\Omega \cap U$.

Note that the above analysis implies that

$$L = S^* \cap \left((\mathbf{B}(z_0) \setminus A^p) \times \mathbb{C} \right)$$

is the graph of holomorphic function $C_0(z)$ on $\Omega(z_0)$.

Due to [6, Remark 2.10], S must be the intersection of a finite family $\{S_{r_j}\}$ (j = 1, ..., q) where r_j (j = 1, ..., q) are different integers in \mathbb{N}^+ . Explicitly, according to 3.2, each S_{r_j} (j = 1, ..., q) is defined by the zeros of a polynomial in w with holomorphic coefficients:

$$R_{d+r_j}(z,w) = A_0^j(z) + A_1^j(z)w + \dots + A_{l_j}^j(z)w^{l_j},$$

with $A_h^j(z)$ $(h = 0, ..., l_j \in \mathbb{N})$ holomorphic in \mathbb{C}^n , where $A_0^j(z)$ is assumed to be not identically zero since L does not intersect $\{w = 0\}$.

There are two possibilities:

1) There exists $j_0 \in \{1, \ldots, q\}$ with $l_{j_0} > 1$. Consider the discriminant $d_{j_0}(z)$ of $R_{d+r_j}(z, w)$ with respect to w. In this case, for $z \in \Omega(z_0)$, it holds

$$A_{l_{j_0}}^{j_0}(z) \cdot d_{j_0}(z) = 0,$$

since $A_{l_{j_0}}^{j_0}(z) \neq 0$ implies $d_{j_0}(z) = 0$. Otherwise the l_{j_0} points: (z, w_i) $(i = 1, \ldots, l_{j_0})$ are in L, which is not possible because L is the graph of a holomorphic function. Since $\Omega(z_0) \subset \mathcal{E}_{j_0} \cap U$, with

$$\mathcal{E}_{j_0} = \{A_{l_{j_0}}^{j_0}(z) = 0\} \cup \{d_{j_0}(z) = 0\},\$$

then $\Omega(z_0) \subset \Delta \cap U$, where Δ is the intersection of the family of sets $\{\mathcal{E}_{j_0}\}$, with $j_0 \in \{1, \ldots, q\}$ and $l_{j_0} > 1$.

2) For all $j \in \{1, ..., q\}$, $l_j = 1$. In this case S is the intersection of

$$S_j = \{ A_0^j(z) + A_1^j(z)w = 0 \} \ (j = 1, \dots, q).$$

Take $\xi_{1j}(z)$, $\xi_{2j}(z)$ (j = 1, ..., q) holomorphic functions in \mathbb{C}^n relatively prime at any z such that $A_0^j(z) + A_1^j(z)w = p^j(z)[\xi_{1j}(z)(z) - \xi_{2j}(z)w]$, with $p^j(z)$ holomorphic in \mathbb{C}^n . Consider

$$\Gamma_j(z) = \begin{vmatrix} A_0^1(z) & A_0^j(z) \\ A_1^1(z) & A_1^j(z) \end{vmatrix} \quad (j = 1, \dots, q).$$

2a) (All S_j are dependent) If q = 1, or q > 1 and $\Gamma_j(z) \equiv 0$ (j = 2, ..., q): $\Omega(z_0) = (\mathbb{C}^n \setminus \Delta) \cap U$, with $\Delta = \Delta_1 \cup \Delta_2$, where

$$\Delta_1 = \{\xi_{11}(z) = 0\} \cup \{\xi_{21}(z) = 0\}$$

and Δ_2 is given by the intersection of $\{p^j(z) = 0\}$ (j = 1, ..., q).

2b) If q > 1 and there is $j_0 \in \{2, \ldots, q\}$ such that $\Gamma_{j_0}(z)$ is not identically zero, $\Delta_{j_0} = \{\Gamma_{j_0}(z) = 0\}$ defines a proper globally analytic of \mathbb{C}^n such that $\Omega(z_0) \subset \Delta_{j_0} \cap U$. Then $\Omega(z_0) \subset \Delta \cap U$, where Δ is the intersection of sets Δ_{j_0} , with $j_0 \in \{2, \ldots, q\}$ such that $\Gamma_{j_0}(z) \neq 0$.

It finishes the proof of Proposition 1.

3.4. Let us suppose that dimension of $\Omega(z_0)$ is n. It is clear that 2a) of 3.3 holds and $\Omega(z_0) = (\mathbb{C}^n \setminus \Delta) \cap U = \mathbf{B}(z_0) \setminus \Delta$. Denote $\xi_{11}(z)$ and $\xi_{21}(z)$, respectively, by $\xi_1(z)$ and $\xi_2(z)$. Consider

$$\xi(z) = \frac{\xi_1(z)}{\xi_2(z)} = -\frac{A_0^1(z)}{A_1^1(z)}.$$

The meromorphic function $-1/\xi(z)$ restricted to $\mathbf{B}(z_0)\setminus\Delta$ is equal to $-1/C_0(z)$. If we substitute $C_0(z)$ by $\xi(z)$ (meromorphic function in \mathbb{C}^n !) in the definitions of $C_k(z)$ of 3.2, taking $C_k(z) = R_k(z,\xi(z))$ (k = 1, 2, ...) we obtain a function

$$G(z,w) = \frac{e^{C_1(z)w + \dots + C_d(z)w^d}}{\xi(z)} - \frac{1}{\xi(z)}.$$

Note that G(z, w) is holomorphic in $(\mathbb{C}^n \setminus \Delta) \times \mathbb{C}$ and coincides with $\tilde{F}(z, w)$ in $(\mathbf{B}(z_0) \setminus \Delta) \times \mathbb{C}$ (see 3.2). Then, G(z, w) is holomorphic in \mathbb{C}^{n+1} and equals to $\tilde{F}(z, w)$. Therefore, if $g(z, w) = C_1(z)w + \cdots + C_d(z)w^d$, $g(z, w)/\xi(z)$ is holomorphic in \mathbb{C}^{n+1} and $g(z, w) = \xi(z)[u_1(z)w + \cdots + u_d(z)w^d]$ with $u_k(z)$ holomorphic in \mathbb{C}^n $(k = 1, 2, \ldots, d)$.

Explicitly,

$$\tilde{F}(z,w) = \frac{1}{1!} [u_1(z)w + \dots + u_d(z)w^d] + \frac{\xi(z)}{2!} [u_1(z)w + \dots + u_d(z)w^d]^2 + \frac{\xi(z)^2}{3!} [u_1(z)w + \dots + u_d(z)w^d]^3 + \dots$$

3.5. It holds that

 $\{z \in \mathbb{C}^n | \tilde{F}(z, w) \text{ is constant} \} = \{z \in \mathbb{C}^n | u_1(z) = \dots = u_d(z) = 0\}.$

First we treat the case where $\xi(z)$ is holomorphic.

Consider z' in \mathbb{C}^n such that $\tilde{F}(z', w)$ is constant. If $\xi(z') = 0$, according to the expansion of $\tilde{F}(z, w)$ in 3.4, it holds if and only if $u_1(z')w + \cdots + u_d(z')w^d = 0$ for any $w \in \mathbb{C}$, or equivalently if $u_k(z') = 0$ ($k = 1, \ldots, d$). If $\xi(z') \neq 0$, as

$$\xi(z)\tilde{F}(z,w) + 1 = e^{\xi(z) \cdot [u_1(z)w + \dots + u_d(z)w^d]},$$

in the same way it is equivalent to $u_k(z') = 0$ (k = 1, ..., d).

Now, we treat the case where $\xi(z)$ is not holomorphic.

Consider a point z' in \mathbb{C}^n such that $\xi_1(z') \neq 0$ and $\xi_2(z') = 0$. Assume that there is w_1 such that $[u_1(z')w_1 + \cdots + u_d(z')w_1^d] \neq 0$ and take a ball $\mathbf{B}(z', w_1)$ in \mathbb{C}^{n+1} centered at (z', w_1) of radius $r_1 > 0$ such that $\overline{\mathbf{B}}(z', w_1) \cap \{(z, w) | \xi_1(z) = 0\}$ is empty. Take a line ℓ in \mathbb{C}^{n+1} passing through (z', w_1) and consider $\ell_0 = \ell \cap \overline{\mathbf{B}}(z', w_1)$. We can assume by [6, Lemma 2.8] that

$$\ell_0 \cap \{(z,w) | \xi_2(z) = 0\} = \{(z',w_1)\}.$$

Suppose that ℓ_0 is defined by $\{(z,w) = \lambda_0 t + (z',w_1)\}$, for a fixed $\lambda_0 \in \mathbb{C}^{n+1}$ and t in a disk \mathbb{D}_{ϵ} in \mathbb{C} of center t = 0 and radius sufficiently small $\epsilon > 0$. It follows by the above expansion of $\tilde{F}(z,w)$ in 3.4 that $\tilde{F}(z,w)$ over L_0 is of the form $(e^{g(t)} - 1)/g(t)$, where g(t) is holomorphic on $\mathbb{D}_{\epsilon} \setminus \{0\}$, and with a pole of positive order at t = 0. It implies the existence of an essential singularity of $\tilde{F}(z,w)$ over ℓ_0 at (z',w_1) and contradicts that $\tilde{F}(z,w)$ is holomorphic. Then, if $\xi_1(z') \neq 0$ and $\xi_2(z') = 0$ necessarily $[u_1(z')w + \cdots + u_d(z')w^d] = 0$, for any w in \mathbb{C} , and $u_k(z') = 0$ $(k = 1, \ldots, d)$. It follows that

$$\{\xi_2(z)=0\} \subset \{u_1(z)=\cdots=u_d(z)=0\}.$$

Then $u_k(z) = v_k(z)\xi_2(z)$ (k = 1, ..., d), with $v_k(z)$ holomorphic in \mathbb{C}^n , and

$$\tilde{F}(z,w) = \frac{1}{1!} \xi_2(z) [v_1(z)w + \dots + v_d(z)w^d] + \\ + \frac{\xi_1(z)\xi_2(z)}{2!} [v_1(z)w + \dots + v_d(z)w^d]^2 + \\ + \frac{\xi_1(z)^2\xi_2(z)}{3!} [v_1(z)w + \dots + v_d(z)w^d]^3 + \dots$$

From this expression, it is clear that a point z in \mathbb{C}^n verifies $\tilde{F}(z, w)$ is constant if and only if $u_k(z) = 0$ (k = 1, ..., d), and $F(z, w) = \tilde{F}(z, w) + \eta(z)$ is as in the statement of Theorem.

Proof of Corollary 1. It is enough to analyze the explicit expression of F(z, w) obtained in the statement of Theorem 1. For a), we take

$$\alpha(z) = -\frac{\xi_2(z)}{\xi_1(z)} + \eta(z),$$

10

EXCEPTIONAL VALUES

 $A = \{\xi_2(z) = 0\} \cup \{v_1(z) = \dots = v_d(z) = 0\}$, and $E' = \{\xi_1(z) = 0\}$. The point b) is clear. For c), we see $\rho(z)$ is d, except on $E \cup \{v_d(z) = 0\}$ where is < d.

Proof of Corollary 2. It follows directly from *a*), *b*) of Corollary 1.

Proof of Theorem 2. Consider Ω_1 and Ω_2 , respectively, the set of finite accumulation points of Ω and the set of isolated points of Ω . If Ω_1 is empty, $\Omega = \Omega_2$ is closed and discrete in \mathbb{C}^n , and then it defines a proper analytic subset E of \mathbb{C}^n . Suppose $z_0 \in \Omega_1$. If there exists a neighborhood U of z_0 such that $\Omega \cap U$ is a local analytic set of dimension n, according to a) of Corollary 1, there exists a proper analytic subset E of \mathbb{C}^n such that $\Omega = \mathbb{C}^n \setminus E$ (note that in this case, Ω_2 is empty). If there exists a neighborhood U of z_0 such that $\Omega \cap U$ is a local analytic set of dimension < n, according to the proof of Theorem 1, concretely, Proposition 1, there exists a neighborhood U of z_0 in \mathbb{C}^n and a proper globally analytic set Δ of \mathbb{C}^n such that $\Omega \cap U \subset \Delta \cap U$. Theorem of Ronkin (see 1.1) allows to take $\rho_0 = \overline{\rho}_w$ independently of the point z_0 , and then conclude that Δ is the same set for all the finite accumulation points of Ω . Then, it is enough to define the proper analytic subset $E = \Delta \cup \Omega_2$ of \mathbb{C}^n to obtain $\Omega \subset E$.

Proof of Corollary 3. Since $\Omega^0 \subset \Omega$, if dimension of Ω is $\langle n,$ the proof follows from Theorem 2 taking $E_0 = E$. If dimension of Ω is n, according to a) of Corollary 1, Ω^0 is defined by the analytic subset E_0 of \mathbb{C}^n given by the zeros of $\alpha(z)$. Then E_0 is proper if $\alpha(z)$ is not identically zero or \mathbb{C}^n otherwise.

References

- A. Bustinduy. Exceptional values of holomorphic functions. Remarks on a Nishino's Theorem. J. Math. Anal. Appl. 457 (2018), 1007–1014.
- [2] A. Eremenko. Exceptional values in holomorphic families of entire functions. Mich. Math. J., 54 (2006), 687–696.
- [3] P. Lelong. Sur les valeurs lacunaires d'une relation à deux variables I, II. Bull. Sci. math.
 (2), 66 (1942), 103–108; 66 (1942), 112–125
- [4] P. Lelong and L. Gruman. Entire functions of several complex variables. Grundlehren der Mathematischen Wissenschaften, 282. Springer-Verlag, 1986.
- [5] T. Nishino. Sur les valeurs exceptionnelles au sens de Picard d'une function entière de deux variables. J. Math. Kyoto Univ., 2 (1963), 365–372.
- [6] T. Nishino. Function theory in several complex variables. Translations of Mathematical Monographs 193. American Mathematical Society, 2001.
- [7] L. I. Ronkin. Introduction to the theory of entire functions of several variables. Translations of Mathematical Monographs 44. American Mathematical Society, 1974.
- [8] E. C. Titchmarsh. The theory of functions. 2. ed. Oxford, University Press 1939.

DEPARTAMENTO DE INGENIERÍA INDUSTRIAL ESCUELA POLITÉCNICA SUPERIOR UNIVERSIDAD ANTONIO DE NEBRIJA C/STA. CRUZ DE MARCENADO, 27, 28015 MADRID. SPAIN Email address: abustind@nebrija.es