Primera página Regresar Continuar Última página Imagen
Sobreajuste
Sobreentrenamiento o sobreajuste (overfitting): A medida que añadimos niveles al AD, las hipótesis se refinan tanto que describen muy bien los ejemplos utilizados en el aprendizaje, pero el error de clasificación puede aumentar al evaluar ejemplos.
Se dice que una hipótesis h se sobreajusta al conjunto de entrenamiento si existe alguna otra hipótesis h' tal que el error de h es menor que el de h' sobre el conjunto de entrenamiento, pero es mayo sobre la distribución completa de ejemplos del problema (entrenamiento + test)
- Es decir, clasifica muy bien los datos de entrenamiento pero luego no sabe generalizar al conjunto de test. Es debido a que aprende hasta el ruido del conjunto de entrenamiento, adaptándose a las regularidades del conjunto de enrenamiento).
Notas: