

Abstract— Technology advances have recently enabled the use
of DRAMs into logic integrated circuits. These embedded
DRAMs can be used to efficiently implement caches since
DRAMs require substantially less area than SRAMs. One
challenge for DRAM based caches is that a small time between
refreshes is needed to ensure data retention. These refreshes
increase the power consumption even when the cache is idle. To
mitigate this issue, the use of longer times between refreshes
combined with the use of Error Correction Codes (ECCs) has
been recently proposed. The idea is that the time between
refreshes can be increased significantly while only causing data
retention failures on a small percentage of the cells. Then those
errors can be corrected by the ECC. For this scheme to be
efficient the number of additional bits required by the ECC
should be small. This is achieved by using large data blocks for
the ECC which in turns means that a large data block has to be
accessed even when only a small portion of it is needed. This has
no effect on idle power consumption but increases the dynamic
power consumption and reduces the effective memory bandwidth.
In this paper, a technique to mitigate this issue is proposed. It
enables better granularity in the read data accesses by
partitioning the ECC block into two sub-blocks and modifying the
error detection and correction processes. This reduces the
dynamic power consumption and increases the available memory
bandwidth while requiring only a moderate increase in the
number of additional bits.

Index Terms— ECC, BCH codes, Caches, eDRAM, memory,
Low power.

I. INTRODUCTION

HE use of new process technologies enables the
integration of embedded DRAM (eDRAM) on a logic

process [1]. This is interesting as eDRAMs can be used to
build on-chip caches that are much denser than their SRAM
counterparts. As an example a 32MB on-chip eDRAM cache
has been incorporated in some IBM processors [2].

A key challenge for eDRAMs is that the refresh time is
much smaller than that of traditional DRAMs [3]. This
substantially increases the power consumption of the memory

This work was supported by the Spanish Ministry of Science and Innovation
under Grant AYA2009-13300-C03-01.

P. Reviriego, A. Sánchez-Macian and J.A. Maestro are with Universidad
Antonio de Nebrija, C/Pirineos, 55, E-28040, Madrid, Spain, (phone: +34
914521100; fax: +34 914521110; email: {previrie, asanchep
jmaestro}@nebrija.es).

when it is idle. To reduce the amount of refreshes, techniques
that keep track of recent accesses have been proposed [4].
However those techniques provide no benefit when the
memory is idle.

When the time between refreshes is increased, some
memory cells will suffer data retention failures. The data
retention time of the cells varies significantly due to process
variations [5], [6]. It has been shown that the time between
refreshes can be increased substantially while keeping the
number of cells that suffer data retention failures low [5]. This
observation has motivated the use of Error Correction Codes
(ECCs) to correct the errors caused by the increased time
between refreshes [6]. Alternative schemes to detect errors
have also been proposed [7].

Error Correction Codes have been used for decades to
protect memories from radiation induced soft errors [8],[9].
Typically per word Single Error Correction Double Error
Detection (SEC-DED) codes are used to that end [10]. This is
sufficient as the error rates for terrestrial applications are low.
However, when the ECCs are used to correct errors caused by
data retention failures in eDRAMs, the error rates can be much
larger. This means that more advanced ECCs that can correct
multiple bit errors are needed. For example, in [11] the use of
Bose–Chaudhuri–Hocquenghem (BCH) codes that can correct
multiple bit errors is proposed for eDRAM caches.

The use of more advanced ECCs also poses implementation
challenges. For example, the number of additional redundant
bits increases with the number of errors that a code can
correct. The decoder complexity and latency also increase with
the error correction capabilities of the code. Techniques to
mitigate those issues were studied in [11] where a scheme
named Hi-ECC was proposed.

In Hi-ECC the issue of the decoding latency is solved by
first checking if there are errors. When there are no errors, the
rest of the decoding stages are not needed. As most of the
blocks will have no errors, the average decoding latency is
low. This technique is complemented with a fast decoding for
single errors and an option to disable the blocks that suffer
multiple errors.

To reduce the number of additional bits, Hi-ECC uses large
blocks (1KB versus 64B). This leverages the fact that the
number of additional bits to achieve a given error correction
capability in an ECCs grows less than the block size. In many
cases, the number of additional bits is related to the logarithm

Low Power embedded DRAM Caches using
BCH code Partitioning

Pedro Reviriego, Member IEEE, Alfonso Sánchez-Macian, Member, IEEE, and Juan Antonio
Maestro, Member, IEEE

T

79978-1-4673-2084-9 c©2012 IEEE

of the block size. The use of large blocks has an important
drawback: read and write operations involve more cells and
therefore require more power and memory bandwidth. This
means that to access a given sub-block of 64B a complete
block of 1KB has to be accessed. For write operations, the
ECC bits can be calculated using only the old and new sub-
blocks and the old ECC bits such that there is no need to
access the whole block. In addition, the encoding of BCH
codes is much faster than the decoding. Therefore the main
problem occurs for read operations. To overcome this issue, in
Hi-ECC a table of recently accessed blocks is used. Since the
contents of this table have been recently refreshed, there will
not be data retention errors and there is no need to use the
ECC for the block such that sub-blocks can be accessed
directly.

In this paper, techniques to allow read operations of data
units smaller than a block using BCH codes are presented. The
proposed scheme preserves the multi bit error correction
capabilities of the block ECC while allowing access to half of
the block. This will reduce the dynamic power consumption
associated with the use of large blocks. Also when a table of
recently accessed data is used, its entries can be half the size
enabling a better granularity that can provide better
performance.

The rest of the paper is organized as follows, in Section II
an overview of BCH codes is presented focusing on the
aspects relevant to the proposed scheme. Then in section III,
the new approach is presented in a general form and compared
with the traditional use of BCH codes. Section IV presents a
case study discussing in detail the proposed scheme for a given
block size and error correction capability. Finally the
conclusions of this work are presented in Section V that ends
the paper.

II. BCH CODES

Bose–Chaudhuri–Hocquenghem (BCH) codes are cyclic
codes for which a large number of block sizes and error
correction capabilities are available [12]. The main
parameters of BCH codes are summarized in the following
equation:

12

12

min +⋅≥

⋅≤−

−=

td

tmkn

n m

 (1)

where n is the block size, k the number of data bits, n-k the
number of additional bits added by the code, dmin the minimum
distance of the code and t the number of errors that the code
can correct.

BCH codes can be systematized such that the data bits are
not modified in the encoding process and only the additional
bits are added. This is needed to use the procedure in which
the blocks are checked for errors first and only decoded when
there are errors.

To check if there are errors, the parity check matrix H of the
code can be used. The encoded data block is multiplied by the

H matrix and an array is obtained. The array is known as the
syndrome, if there are any non zero bits in the syndrome, the
block contains errors. The H matrix for BCH codes has the
following form:

() () () ()

() () () () ⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−−−−−

−

−

12112312212

3133323

132

...1

..................

...1

...1

tnttt

n

n

H

αααα

αααα

αααα

 (2)

where α is a primitive element in the Galois Field GF(2m). It
can be observed that the H matrix is constructed in such a way
that the matrix for a code that can correct t errors contains the
matrixes for the codes that can correct 1,2,..,t-1 errors. As an
example, for t=2, m=4 and n = 24-1=15, the following H
matrix is obtained:

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

111101111011110

101001010010100

110001100011000

100011000110001

111101011001000

011110101100100

001111010110010

111010110010001

H

 (3)

In this case, the values over the GF(24) are represented by
four bits in binary form such that α={0100}. Then, the first
four rows of this matrix are precisely the H matrix for the BCH
code with the same m and n but with a value of t=1. This code
has a minimum distance of 2t+1 = 3 and therefore can detect
double errors. Those are precise the errors that can correct the
code with t=2. Therefore one interesting observation is that for
a given BCH code that can correct t errors the upper ⎡ ⎤2/tm ⋅

rows of the H matrix are sufficient to detect t errors. This
means that correctable errors can be detected by computing
only part of the syndrome. This observation is used in the
following section during the derivation of the proposed
scheme.

III. BCH CODE PARTITIONING SCHEME

The proposed technique is based on dividing the data block
in two parts and storing additional information that allows us
to detect errors in any of the two parts. This can be done by
storing the partial result of the syndrome computation for the
first half of the block. Then if the first half is accessed that
partial result can be used to check if there are errors. If the
second half is accessed, the same partial result can also be
used to check if there are errors. This is so because the overall
syndrome is zero in the absence of errors. Therefore the partial
syndrome has to be the same in the two halves so that the XOR
of both results is zero.

80 2012 IEEE 18th International On-Line Testing Symposium (IOLTS)

Figure. 1: Illustration of the proposed partitioning scheme.

An illustration of the proposed scheme is shown in Figure 1.
In the proposed scheme the coded word is divided in two
halves FH ={C1,C2,…,Cn/2}and SH={Cn/2+1,C2,…,Cn} and a
partial syndrome P is also stored. The syndrome is computed
as:

cHS ⋅= (4)

where c is the coded block composed of bits C1,C2,….,Cn in
column form. The partial syndrome P for the first half block is
computed as

HFH FHP ⋅= (5)

Where HFH is a matrix composed of the first n/2 columns of
H. In the absence of errors the syndrome will be zero and since

HSHHFH SHFHcHS ⋅⊕⋅=⋅= (6)

 it follows that

HSHHFH SHFHP ⋅=⋅= (7)

This means that the partial syndrome can be used to check if
there are errors in the first or the second half of the block.
Therefore in the proposed scheme half blocks can be read and
the partial syndrome is checked against the stored bits to detect
errors. If there are errors, then the whole block is read and the
errors are corrected using the BCH code. Since most reads will
have no errors, the percentage of times that the full block has
to be read will be small.

In Figure 1, all the bits in the syndrome are also stored in
the partial syndrome. This would double the number of
additional bits required for the ECC. So it would be more
effective to use a block of half the size protected with a BCH
code that can correct the same number of errors. However, the
observation about the H matrix of BCH codes in the previous
section enables a reduction of the number of bits that need to
be stored in the partial syndrome. This number is given by

⎡ ⎤2/tm ⋅ and the bits that have to be stored are the ones that

correspond to the top ⎡ ⎤2/tm ⋅ rows of the H matrix. With

this optimization the number of additional bits is reduced
compared to using a traditional BCH with half the block size.
As an example the three options are compared in Table I in

terms of the number of additional bits required for 128B data
bits and t =2. It can be observed that the proposed scheme
provides an intermediate option between using two blocks of
64B or a block of 128B.

TABLE I. NUMBER OF ADDITIONAL BITS

BCH block of 128B 22
Two BCH blocks of 64B 40

Proposed Scheme 33

In the general case and assuming that the number of
additional bits for a BCH code is tmkn ⋅=− for a block size
k the proposed scheme requires:

⎥
⎥

⎤
⎢
⎢

⎡
⋅+⋅=

2

t
mtmBproposed

 (8)

additional bits for n bits. This compares to tm ⋅ bits for a
BCH code of the same block size and tm ⋅−⋅)1(2 for a BCH

code of half the block size.
The discussion so far has not considered errors that affect

the partial syndrome bits. Those however can potentially lead
to undetected errors. As an example consider again the case
t=2. Suppose that an error affects one data bit Ci for which the
corresponding column in H has only a non zero bit in the rows
that are stored in the partial syndrome. Then if another error
affects the bit in the partial syndrome that corresponds to the
row that has the non zero value for the first bit in error, the
error will not be detected. Therefore, this double error will not
be corrected. Since the BCH code has t=2 the error would in
principle be correctable if it is detected. For the H matrix in
(3) this would occur for example if an error affects the first bit
of the word and the first bit of the partial syndrome.

To address the issue of errors affecting the partial syndrome,
a parity bit could be used to protect the partial syndrome. This
would ensure that single errors in the partial syndrome are
detected. When that occurs, the complete block is read and the
full BCH code is used to ensure that the error on the partial
syndrome does not mask errors on the data bits. When t is
larger than 2 a SEC or SEC-DED code can be used to protect
the partial syndrome to ensure that multiple errors are
detected.

The protection of the partial syndrome solves the issue of

2012 IEEE 18th International On-Line Testing Symposium (IOLTS) 81

undetected errors but adds more additional bits to the block.
This can be avoided using a different approach. Since the
number of data bits in a block d is typically a power of two
(for example 64B), from (1) the block size n has to be 2•d-1 to
accommodate d data bits. This means that the code is
shortened as k will be much larger than d. The shortening is
done by setting to zero some of the data bits in all blocks.
Those bits are not stored in the cache and the decoder
automatically sets then to zero. When t=2, the shortening can
be used to remove the bits in H for which the first m rows have
only a bit that is one. If all those columns are removed, then a
single error in a data bit and another in the partial syndrome
will always be detected. The same approach could be used
when t is larger than two but in that case, with a number of
errors of t, multiple errors can occur in the data bits and the
partial syndrome. This complicates the analysis that is not
developed further in this paper.

In this section the proposed approach has been presented in
a general form. In the next section a specific case is illustrated
covering all the details and showing its applicability to
practical situations.

IV. CASE STUDY

A cache that uses 64B sub-blocks in the access operations
has been selected as a case study. This is the same
configuration used in [11]. Using the proposed scheme the
cache is structured in blocks of 128B. A BCH code with t =2
(i.e. a double error correction code) is used in each block.
This code is obtained by shortening the (n=2047, k= 2045)
BCH code so that the number of data bits is 128B. To that end
1011 bits are set to zero. The partial syndrome is composed of
10 bits that are also stored in the memory as illustrated in
Fig.1.

The shortening of the code is performed in such a way that
the issue of undetected errors discussed in the previous section
is avoided and the implementation is optimized. The
optimizations enable the reduction of the number of additional
bits and the simplification of the decoding logic. The process
starts with the first m rows of the original H matrix that will be
denoted as HSEC. For the (n= 15, k =7) code in (3) for which
m=4 this would be:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

111101011001000

011110101100100

001111010110010

111010110010001

SECH
 (9)

and the seven data bits correspond to the seven leftmost
columns in the matrix.

Now, the columns in HSEC are rearranged such that the mth

row has all the zero values on the first columns. This reordered
matrix will be denoted as HSEC-Reordered and its shown below for
the (n= 15 ,k =7) code. This reordering will allow us to reduce
the number of bits stored in the partial syndrome as discussed

later.

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=−

111111110000000

011100101110100

001111001011010

111001001101001

Re orderedSECH
 (10)

The shortening is now done over the reordered data block.
To that end the columns that have only a one in the first m-1
rows are eliminated (i.e. the value of the associated bit is fixed
to zero). This can be done as long as those columns
correspond to data bits and not to parity bits whose value
cannot be fixed as it depends on other data bits. For large
block sizes this is not an issue as most bits are data bits (for
example for a 64B block we have 512 data bits and 10 parity
bits). For the (n= 15 ,k =7) code the shortening is done to get a
block with four data bits with the following HSEC-Final matrix:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=
−

111111110000

011100101110

001111001011

111001001101

FinalSECH
 (11)

which has data bits on columns 1,2,5 and 6. Now the block
can be divided in two sub-blocks, the first comprises bits 1 to
4 and the second the rest. The partial syndrome is also stored,
but only the first m-1 =3 bits are needed as the mth bit will
always have a value of zero in the first block and therefore
from (7) also in the second. This reduces the number of
additional bits to m-1 instead of m. In fact for this scheme to
work, the fifth column also needs to be removed as otherwise
an error on that bit would not be detected.

For larger data blocks, many bits have to be removed in the
shortening process. The bits removed can be selected in such
a way that the two sub-blocks have:

1. The same number of data bits.
2. Similar columns in the HSEC-final matrix.

and

1. All the columns with only one bit with a value of
one in the first m-1 rows are removed.

2. The column that has all the bits with a value of zero
in the first m-1 rows is removed.

Then the word can be reordered again so that the columns in
the two sub-blocks are matched. This enables the use of
similar equations to compute the partial syndrome in both
sub-blocks thus reducing the implementation cost. This
matrix will be denoted as HSEC-Opt and is illustrated below
for a BCH code with (n = 63, k=51).

82 2012 IEEE 18th International On-Line Testing Symposium (IOLTS)

 HSEC-Opt = (12)

�

It can be observed that most columns in the first (FH) and
second (SH) sub-block are the same.

The described procedure has been applied to the (n=2047,
k= 2025) BCH code to obtain a block of 1046 bits of which
22 are parity bits and 1024 data bits. This block of 128B data
bits is divided in two sub-blocks of 523 bits containing 512
data bits and 11 parity bits. The corresponding columns in the
HSEC-Opt matrix for each sub-block are the same except for two
columns. This enables the use of very similar logic to perform
error detection in the two sub-blocks.

The proposed scheme requires 22 bits for the BCH code and
10 for the partial syndrome giving a total of 32 bits. This
compares with the 40 bits required to implement the BCH
code in 64B blocks and 22 bits to implement the BCH for
128B blocks. Therefore, it provides an intermediate option in
terms of cost. In terms of performance, it enables read access
to 64B blocks unless they have errors. Since errors are rare,
the impact of those cases should be negligible. This means that
the overhead of reading 128B blocks and its impact on
dynamic power consumption is avoided.

The proposed scheme for a 128 block with two 64B sub-
blocks has been implemented and tested using fault injection
to ensure that all single and double errors are detected. All
possible combinations for single and double errors have been
exhaustively checked. Once an error is detected, the complete
block would be read and the DEC BCH code used to correct
the errors.

The error detection process for some errors is described in
the following:

• A single error on any of the sub-blocks will be
detected as all the columns have no zero values in the
first m-1 rows.
• A double error on any of the sub-blocks will be
detected as the first m-1 rows are different in the
columns in each sub-block.
• A single or double error in the partial syndrome will
be detected as the check for the affected row (or rows)
will give an error.
• A single error in a sub-block combined with a single
error in the partial syndrome will be detected as by
construction, all the columns have more than a bit with
a value of one in the first m-1 rows.

In summary, all single and double errors are detected when
reading a sub-block. This ensures that those errors will be
corrected by accessing the complete block and using the BCH
code.

V. CONCLUSIONS

This paper has presented a technique to enable a better
granularity for read accesses to a memory protected with BCH
codes. This is done by partitioning the data block in two sub-
blocks and storing additional information to perform error
detection per sub-block. This enables read operations to access
each sub-block and only if there are errors, the complete block
has to be read.

The proposed scheme can be useful when BCH codes are
used to protect embedded DRAM caches from the errors
caused by using large periods between refreshes. In that case,
BCH codes for large blocks are used to minimize the number
of additional bits. However, this requires to access large
blocks even when only a small part of the block is needed.
This increases the dynamic power consumption and reduces
the effective memory bandwidth. In this context the proposed
scheme enables to read sub-blocks independently thus
mitigating the problem.

Future work will focus on evaluating the power savings for
a given processor and for different software benchmarks as
done in [11]. The application of the technique to BCH codes
that can correct more errors will also be considered. The first
step will be to consider codes that can correct four errors and
derive the optimum check matrixes for each of the sub-blocks.

REFERENCES

[1] R. Matick and S. Schuster, “Logic based eDRAM: origins and rationale
for use,” IBM Journal of Research and Development, vol. 49, no. 1, pp.
145 – 165, Jan. 2005.

[2] R. Kalla, “Power7: IBM’s next generation POWER microprocessor,”
Presentation at Hot Chips 21, Stanford, CA, Aug. 2009.

[3] J. Barth, et al., “A 500 MHz random cycle, 1.5 ns latency, SOI
embedded DRAM macro featuring a three-transistor micro sense
amplifier”, IEEE Journal of Solid State Circuits, vol. 43, no. 1, pp. 86–
95, Jan. 2008.

[4] M. Ghosh and H. Lee, “Smart refresh: An enhanced memory controller
design for reducing energy in conventional and 3D die-stacked
DRAMs,” in Proceedings of the 40th International Symposium on
Microarchitecture, pp. 134–145, Dec. 2007.

[5] W. Kong, et al., “Analysis of retention time distribution of embedded
DRAM - A new method to characterize across chip threshold voltage
variation,” in Proceedings of IEEE International Test Conference (ITC
2008), pp. 1-7, Oct. 2008.

[6] P. Emma, W. Reohr and M. Meterelliyoz, “Rethinking refresh:
Increasing availability and reducing power in DRAM for cache
applications,” IEEE Micro, vol. 28, no. 6, pp. 47-56, Nov 2008.

[7] P. Oehler, S. Hellebrand: Low Power Embedded DRAMs with High
Quality Error Correcting Capabilities, 10th IEEE European Test
Symposium (ETS05) , pp. 148-153, May 2005.

[8] R.C. Baumann, “Radiation-induced soft errors in advanced
semiconductor technologies”, IEEE Trans. On Device and Materials
Reliability, Vol. 5, No. 3, 2005, pp. 301-316.

[9] C. L. Chen and M. Y. Hsiao, “Error-correcting codes for semiconductor
memory applications: a state-of-the-art review”, IBM Journal of
Research and Development 28(2), 1984, pp. 124-134.

[10] J.A. Maestro, P. Reviriego, "Reliability of Single-Error Correction
Protected Memories", IEEE Transactions on Reliability, Vol. 58, No 1,
March 2009, pp. 193-201.

[11] C. Wilkerson, A. R. Alameldeen, Z. Chishti, W. Wu, D. Somasekhar
and S. Lu, “Reducing Cache Power with Low Cost, Multi-bit Error-
Correcting Codes”, International Symposium on Computer Architecture,
pp. 83-93, Jun. 2010.

[12] S. Lin and D. J. Costello, “Error Control Coding, 2nd Ed.”, Englewood
Cliffs, NJ: Prentice-Hall. 2004.

2012 IEEE 18th International On-Line Testing Symposium (IOLTS) 83

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

